

Western Transportation Institute

3D Sensors and AI Solutions for Pavement Distress & Safety Evaluation

Kelvin C.P. Wang, PhD, PE, Dist.M.ASCE Professor of Civil Engineering Director of the Western Transportation Institute (WTI)

Montana State University

6th Annual IRF Global R2T Conference Arizona Pavements/Materials Conference Tempe, AZ, Nov 16, 2023 Western Transportation Institute (WTI)

oMajor Research Institute in Transportation in the US

oBest Known for Rural Transportation Research

oWTI in Bozeman, MT; Montana State University

- >\$11million Annual Research Expenditure at its Peak with 50 Staff Members
- Substantial Programs in Road Ecology, Safety, Workforce Development, et al

➢Will Grow in Safety Research & Automated Evaluation

US-191/MT-64 Wildlife & Transportation Assessment

Western Transportation Institute

0.5-mm 3D, Pave3D 8K After 30 Years

30-Year Commitment

Resolution: 1mm

Detection Output with Pixel-Level Accuracy

(Zhang at al. 2017, in Computer-Aided Civil and Infrastructure Engineering)

Traditional Artificial Neuron Network (ANN)

of Neurons<10⁴

of Neurons=10¹¹ (Human Brain)

Shallow Abstraction

Limited Number of Layers & Neurons
Cannot Fully Reflect the Complexity of Problems
Limited Amount of Data

Deep Learning: New Generation of ANN

Deep Abstraction: # of Layers: 10¹-10³, for Complex Problems
Connections Among Neurons: 10²-10⁴ per Neuron
Enhanced Reliability: Exhaustive Variations of Example Data
High-Performance Processing: compute, memory, & bandwidth

Why Deep Learning?

□Strong Learning Ability and Versatility

> A DL Network: Multiple Types of Objects (Pavement Distresses)

DEnhanced Reliability

> Feed with Exhaustive Variations of Examples

Learning/Knowledge Accumulation

Similar to Human Learning Process

Some Insights in Deep Learning

OArtificial Neurons: Simulating Humane NeuronsOLarge # of Neurons & Layers

- oKey: Connecting Weights between Layers of Neurons
 - Low Dynamic Range of Weights: around 8-bit or less simulating range of signal variations of humane neurons
 - o GPUs: perfect for massive parallel processing at low dynamic
 - o Very Sparce & Huge Matrix Operations: new hardware (GPU et al)
- oMany New Methods on Deep-Learning by Large Firms
 - o Innovations to determine weights for higher performance
- oLearning/Training and Inferencing: two separate processes

Applications of Deep Learning

oCognition based Classification oPerfect for Cracking Identification, like CrackNet oCan be very fast depending on GPU & Platform oOther Problems in Pavement Evaluation oNon-Cracking Visual Distresses oPavement Safety o"Long-Shot" Pavement Problems oRelating Surface Deflections to Layers' Moduli? **o**Pavement Materials Properties oSpecific Challenges in ME based Pavement Design

oMulti-Objective DL for Distresses

oSafety Sensor at 0.1-mm or Higher Resolution

Recent Developments of CrackNet

Real-time Collection & Detection Processing Speed: 90 MPH

Multiple-Distress

Pixel-Level Accuracy, Diverse Training Data
Deep Neural Networks, Parallel Computing, Efficiency
Non-Cracking Distresses
Real-Time Processing
Consistent Accuracy (Precision & Bias)
Better than 90% All the Time

Intelligent pixel-level detection of multiple distresses on asphalt pavements 2022/11 Computer-Aided Civil and Infrastructure Engineering

Multi-Distress Single-Network on AC

□ Distresses and typical patterns

Crack, Pothole, Patch, Sealing, Marking, Expansion Joint, Manhole

Performance Goals

□ Pixel-level accuracy: >90%

□ Processing Speed: >200 Kilometer Per Hour

Multi-Distress Single-Network on Rigid

□ Distresses and typical patterns

- Crack, Pothole, Corner break, Divided slab, Sealing, Patch, Joint spalling, Joint, Marking, Manhole
- Performance Goals
 - □ Pixel-level accuracy: >90%
 - □ Processing Speed: > 200 Kilometer Per Hour

Introduction to Non-Contact Safety Sensor

- Pavement texture, friction, and hydroplaning: three main aspects in performing pavement safety evaluations
- Not possible: micro-texture at highway speeds
- Current friction testing devices: expensive, hard to maintain, unable to perform network friction evaluation, & data accuracy-repeatability in question
- Need a new approach to collecting pavement safety information in a true non-contact and continuous manner for network survey

Factors in Pavement Safety Evaluation

- Pavement texture, friction, and hydroplaning: three main aspects in performing pavement safety evaluations
- The number and severity of traffic crash: increase when roadway sections have low friction numbers or texture depth
- Highway locations with a propensity for hydroplaning: identified and corrected with proper remedies to minimize the potential safety risks

Prototyping 0.1-mm 3D Laser Imaging

Current 0.1-mm 3D Safety Sensor

Samples of 0.1mm 3D Pavement Surface

Samples of 0.1mm 3D Pavement Surface

Example Images at An Exact Location

2D

3D

0.1 mm

Example Images of 0.1 mm Safety Sensor

Asphalt Pavements

Example Images of 0.1 mm Safety Sensor

2D Images

Concrete Pavements

Need of Ultra-High Resolution for Safety Sensor

- Using three-dimensional (3D) imaging technology for pavement texture evaluation
- Stationary devices for 3D texture evaluation
 - Collect high resolution 3D texture images statically
 - Unable to conduct network texture evaluation

Objective

- Reconstruct 0.1 mm 3D texture data using PT-SRGAN at highway speed
 - 0.1 mm 3D data along transverse direction
 - Resolution along longitudinal/travel direction
 - Need to increase the longitudinal/travel resolution
 - Super Resolution (SR) Techniques

Data Collection

- Collect true 0.1 mm texture data at a speed < 1 mph via 0.1 mm 3D Safety Sensor
 - 10 road surface types (5 AC and 5 PCC)
 - 1468 images for model training, validation, and testing

5 AC

Recursive GAN on Akin-Laplacian Pyramid

•Advantages

- High upscaling factors: up to 64x
- Any upscaling factor in combination with bicubic upscaling at each scale

Example Results (1)

• Asphalt pavement

Example Results (2)

• Longitudinally grooved concrete

MPD and MTD for Macro-texture

Wavelet Energy for Micro-Texture

Pavement Friction Prediction - DFT

Multivariate Linear Regression Model

Neural Network Model

Conclusions

Western Transportation Institute

Present

Deep Learning Outperforms Traditional Approaches
Deep Learning Fulfills Pavement Distress Detection

GPU Parallel Computing Supports Real-time & Faster Detection

Future

Reduced Dependence on Manually-Labeled Data
Multiple Distress Detection (pavements & bridges)
ME-Design to PMS: Many AI Based Solutions
Bright Future: Non-Contact 3D Safety Sensor