Materials for Maintenance and Rehabilitation of Asphalt Pavement

Asphalt Types Used in Pavement

Asphalt cement (asphalt binder)

- Used for HMA, patching, sealing and waterproofing
- Asphalt emulsion
 - Used for cold mix & maintenance applications
- Asphalt cutback
 - Used for cold mix & maintenance applications

Asphalt Emulsion

- = Asphalt + water + emulsifying agent
- Maintenance treatments, patching, base and sub-base stabilization, cold mix
- Safer than cutback
- Environmentally better
- ➢Approx. same cost

Asphalt Cutback = Asphalt + solvent

- Hazardous, volatile solvents and hydrocarbons are released
- Same uses as emulsion
- Not commonly used any more

Visco-Elastic Properties

Asphalt binder is a visco-elastic material.

- •viscous at high temps, like a fluid
- •elastic at low temps, like a solid
- •its characteristics depend on both temperature and loading rate
- Complex chemical properties

Asphalt binder's specifications based on physical properties

Use of Asphalt in Paving

Asphalt Emulsion

- Maintenance treatments, patching, base/sub-base stabilization, cold mix
- Asphalt Concrete = Asphalt + aggregate
 - used mainly for hot mix asphalt pavement surfacing (HMA)

Temperature Susceptibility of Asphalt

- Asphalt is highly affected by temperature
- Slope indicates degree of susceptibility
- Some additives can reduce temp. susceptibility

Log temperature, Degrees Rankine

Thermal Cracking

Rutting

>Asphalt comes in different grades (soft and hard)

- Soft (low viscosity) asphalt is used in cold climates to avoid thermal cracking
- Hard (high viscosity) asphalt is used in hot climates to avoid rutting

Log temperature, Degrees Rankine

Superpave Binder Specs Intended to improve pavement performance by reducing the potential to: Permanent deformation Fatigue cracking Low-temperature cracking Excessive aging from volatilization Pumping and handling

Superpave Grades PG 64-16, PG 70-10, ...

PG # - # Low-temperature grade High-temperature grade Performance graded

Binder Grades in the Performance Grade Specs 6 degree increments

High Temperature Grades (°C)		Low Temperature Grades (°C)			
PG 46		-34, -40, -46			
PG 52		-10, -16, -22, -28, -34, -40, -46			
PG 58		-16, -22, -28, -34, -40			
PG 64		-10, -16, -22, -28, -34, -40			
PG 70		-10, -16, -22, -28, -34, -40			
PG 76		-10, -16, -22, -28, -34			
PG 82	3	-10, -16, -22, -28, -34			

Superpave Binder Equipment

Pavement Temperature, C

Modified Asphalt

- Many additives are available
- Additives can:
 - Reduce temperature susceptibility
 - Improve adhesion to aggregates
 - Increase resistance to permanent deformation
 - Increase resistance to fatigue cracking
 - Improve elasticity, ductility, and durability

Asphalt Emulsion

Emulsion Types & Grades

Anionic Cationic **RS-1**, **RS-2 CRS-1**, **CRS-2** CMS-2, CMS-2h MS-1, MS-2, MS-2h HFMS-1, HFMS-2 CSS-1, CSS-1h HFMS-2h, HFMS-2s SS-1, SS-1h

Emulsion Nomenclature

CMS - 1 hh = hard asphalt residue, s = soft1,2 = indicates emulsion viscosity M = medium set, Q = quick, R = rapid,S=slow C = cationic, HF = high float

Applications ► Quick Set Slurry seal, microsurfacing Rapid Set Chip seal, sand seal Medium Set Crack seal Fog seal Slow Set Fog seal

Aggregate Properties

Aggregate Properties

- 1. Gradation
- 2. Particle shape & surface texture
- Toughness & hardness
 Porosity

1. Aggregate Gradation

DENSE-GRADED

GAP-GRADED

OPEN-GRADED

Examples of Gradation Specifications

Sieve	Percent Passing				
9.5 mm (3/8)	100	100 -			11
4.75 mm (No. 4)	95–100	90 - 80 -	- ← HMA gradation - ▼- Lower limit - ▲- Upper limit	1	
2.36 mm (No. 8)	80–100	70 -			
1.18 mm (No. 16)	50-85	60 - (%) 6u		//	
0.60 mm (No. 30)	25–60	issed 30 -			
0.30 mm (No. 50)	10–30	20 -	A CONTRACTOR		
0.15 mm (No. 100)	2-10	10 - 0 -	€_+_+		
		0	.0 0.1 1.0 Sieve Siz	20 10.0 ze (mm)	

Which Gradation to Use?

HMA, slurry seals, ➢ Dense microsurfacing **Open-graded** friction Dpen course Asphalt rubber, SMA Gap ➢One-sized Chip seals

Open Graded Friction Course

2. Particle Shape & Texture

Angular shape

Rough texture

3. Toughness & Hardness

Resistance to mechanical degradation

Los Angeles abrasion test

4. Porosity

No porosity reduces adhesion
 High porosity absorbs too much asphalt
 "Low porosity" is required

Asphalt Concrete (Hot-Mix Asphalt)

Asphalt binder + aggr.(dense gradation)

Asphalt binder is about
 4 - 6% by weight of
 mix, but it needs to be
 carefully designed

Superpave Mix Design

Find asphalt content using available binder & aggregate:

a) Aggregate selection b) Binder selection c) Aggregate gradation d) Design binder content e) Evaluate moisture susceptibility

Gyratory Compactor

HMA Production & Construction

Materials to plant

- Aggregate stockpiles to minimize segregation
- Tank binder kept at elevated temperature
- Plant types
 - Batch
 - Drum

Plant

- Mix asphalt and aggr. to required proportions
- Discharge to trucks for haul to job site

Paver

Place hot mix to desired thickness & smoothness

Compactors

Achieve desired density

Batch Plant

Drum-Mix Plant

HMA Placement

