

Pavement Evaluation Techniques

Pavement Evaluation

Surface condition / distress
 Serviceability / roughness
 Structural capacity
 Surface friction

Pavement Evaluation

Surface condition / distress
 Serviceability / roughness
 Structural capacity
 Surface friction

1. Condition (Distress) Survey

- Document existing condition
- Determine causes of deterioration
- Identify repair locations and
 - quantities
- Identify feasible maintenance alternatives

Distress Characterization

Type
Severity
Extent

Distress Types for Asphalt Pavements ➤ Fatigue cracking ➢ Potholes Thermal cracking ➢Rutting ➢ Bleeding ➢ Raveling ≻Shoving ►Etc.

Severity

LowModerate

≻High

Cracking Severity

Extra High Severity Cracking

Extent

≻Low>Moderate>High

Distress Identification Manual

BenefitsConsistent definitionsStandardizedCalibration

Degree of sophistication
LTPP (research oriented)
Project Level (design oriented)

Fatigue - Medium Severity

Fatigue - High Severity & Extent

Potholes - High Severity & Extent

Large Potholes-Signing?

Transverse Crack - Med. Severity

Transverse Crack - Med. Severity

CONTRACT 8086 Core no. 2

Transverse Crack - High Severity

Rutting - High Severity

Flushing / Bleeding - High Severity

Raveling - High Severity

Condition (Distress) Survey ➤Types of condition survey ✓Manual ✓Mechanical (automated)

 Network level versus project level
 Sampling versus complete coverage
 Frequency of surveys Manual Distress Survey
More detailed than automated
Slower than automated

Types
✓ Windshield survey
✓ Walking
✓ Combination

•Photos, Videos

Windshield Survey

Walking Survey

Data Forms

Hand-Held Computer

Knees and Elbows Survey

Automated Distress Surveys More consistent Increased safety No traffic disturbance Predictable productivity Objective output Increased sample size Cost saving (Long term)

Profilometer for Measuring Rutting and Roughness

https://www.youtube.com/watch?v=rcDFVxcb___C

Automatic Road Analyzer(ARAN)

Condition & Roughness

City of Phoenix ARAN

Use of Drones in Pavement Condition Survey ≻Still developing

Pavement Condition Index (PCI) (ASTM D6433) Numerical rating of pavement condition ranging from 0 to 100

Deduct values for each distress type and severity

Example of PCI of an Airport

Pavement Evaluation

Surface condition / distress
 Serviceability / roughness
 Structural capacity
 Surface friction

Vehicle-Pavement Interaction

2. Serviceability / Roughness

Roughness

 Deviations in pavement surface that affect ride quality
 Caused by:
 Built-in surface irregularities

 Irregularities caused by traffic and environment

Present Serviceability Index (PSI)
 International Roughness Index (IRI)

Serviceability

Developed during the AASHO Road Test
 Measure of user's perception of pavement rideability

➢PSI Scale

Zero (impassable) to Five (very good)
 Working range: 2.5 to 4.6
 PSI is highly correlated with roughness

IRI

A roughness scale based on the response of a generic motor vehicle (Quarter car model)

IRI is the cumulative vertical deviations over a section of road per unit length (inches/mile)

A wide range of roughness measuring devices can be used

Typical values: 25 in./mile (smooth), 250 in./mile (rough)

Profilometer

Maysmeter

Pavement Evaluation

Surface condition / distress
 Serviceability / roughness
 Structural capacity
 Surface friction

3. Structural Capacity Directly related load carrying capacity and required overlay thickness Nondestructive testing (NDT) Deflection measurement ✤Faster Provides weighted average of the whole pavement section \succ Lab testing

Falling Weight Deflectometer (FWD)

https://www.youtube.com/watch?v=0KDplKQwOAQ

Deflection Measurement

Traffic Speed Deflectometer (TSD)

https://vimeo.com/95111238

Potential Results From NDT

Project variability
 Subgrade soil support
 Critical periods
 In-situ material properties
 Structural adequacy

Uniformity of Project

Backcalculation of Layer Moduli

From the FWD results, we can estimate the stiffness of each layer
 Used in the mechanistic overlay design

Typical Deflection / Time Plot

Conducting NDT Surveys

Temperature measurements

- Multiple locations
- Air and pavement
- Correction to standard (e.g., 70°F)

Testing Locations

➤ 100 to 500 ft intervals

Typically outer lane only

Outer wheel path

Both directions - staggered

Condition Assessment / Pavement Evaluation

Surface condition / distress
 Serviceability / roughness
 Structural capacity
 Surface friction

4. Surface Friction

Surface friction •Skid resistance •Safety concerns ✓Hydroplaning ✓Wet weather accidents

Skid Resistance

Interaction between tire and pavement
 Coefficient of friction:

N = W

$$f = \frac{F}{W}$$

Wet condition is more critical

Common Friction Measurement Equipment Locked wheel skid resistance

https://www.youtube.com/watch?v=AnoWN4utBsY

Dynamic Friction Tester

Overall Project Evaluation

Cost-effective solution

Address deficiencies

Satisfy constraints
 Project size versus thoroughness of evaluation

Project Evaluation Flowchart

Data Analysis

Quit Complaining About Your Job

