Concrete Pavement Joint Sealing

19th Arizona Pavements/ Materials Conference

November 16, 2022

Kurt Smith Applied Pavement Technology, Inc.

Outline

- Joint Sealing Description
- ADOT Frame of Reference
- What Have We Learned?
- Closure

Joint Sealing Description

What Is It?

 Placement of an approved sealant material in an existing joint (transverse or longitudinal)

Why Do We Seal Joints?

• Minimize moisture infiltration

Why Do We Seal Joints?

Reduce incompressibles

What Do We Expect?

• 2019 FHWA Tech Brief

- Hot-Poured Sealants: 3 to 8 years
- Silicone Sealants: 8 to 10+ years
- Longer performance also documented
- Factors affecting performance:
 - Movement (slab size, base, climate, loading)
 - » Joint installation/preparation

applied pavement

Sealant properties and design

Hot-Poured (WA)

Courtesy Larry Scofield

ADOT Frame of Reference

First Concrete Pavements in Arizona

- 1919/1920: \$4M
 & \$4.5M bond
 programs in
 Maricopa Co.
- Paved 277 miles by 1927
- "Saved" users money in terms of maintenance and increased gas/oil consumption

applied pavement

CHNOLOGY

Early Concrete Pavement Joint Maintenance

- Common early "sealants:" tar paper, tar, coal tar, Tarvia, bitumen, rubber, sand, wood
- Limited effectiveness in accommodating slab movements and keeping incompressibles out
 - » Expansion joints
- General movement to bituminous materials
 - » Unmodified asphalt cement
 - » Some ductility

Arizona Sealant Studies

Factors Evaluated

- Various sealant material types and installation procedures
- Various sealant configurations (widths, depths)
- Concrete pavement designs
- Some joint sealant study locations
 - » I-17, Flagstaff
 - » Phoenix Urban Corridor pavements (SR 360, I-10, I-17)
 - » US 60, Mesa
 - » I-10, Buckeye
 - » US 93, Santa Claus

Historical Arizona Joint Sealing Practices

Year	Joint	Sealing Material
1928	Expansion (0.75 inch)	Wood Filler + Bituminous
1947	Contraction (formed)	Fed Spec SSF-336 (HP)
1956	Contraction (formed) (+1 experimental sawed project)	Fed Spec SS-S-164 (HP); SS-S-159 (CP), SS-S-156 (CP)
1963	Contraction (sawed 0.19 inch, 0.37 inch reservoir) Contraction (metal insert)	Fed Spec SS-S-164 (HP) (AASHTO M173); SS-S-159 (CP)
1982	Contraction (sawed 0.13 inch, 0.37 to 0.5 inch reservoir)	Fed Spec SS-S-164 (AASHTO M173); ASTM D3406
c.2003	Contraction (sawed 0.13 inch, 0.13 to 0.19 inch reservoir)	ASTM D5893 (silicone); ASTM D3406 or ASTM D3569 (HP)
2021	Contraction (sawed 0.13 inch, 0.13 to 0.19 inch reservoir)	ASTM D5893 (silicone) ASTM D6690 (II/III)

2021 ADOT Joint Sealant Specification

- Materials, Section 1011
 - » 1011-3, Joint Sealant (Hot-Applied) (ASTM D6690, Type II or III)
 - When PCC is to be overlaid with ARFC
 - » 1011-8 Silicone Joint Sealant (ASTM D5893)
 - When PCC is not to be overlaid
- Installation
 - » Section 401-3.06 Joint Construction
 - » Section 402-6, Joint and Crack Repair

Courtesy Larry Scofield

What Have We Learned?

What Have We Learned: Joint Shape Factor

What Have We Learned: Narrow is Better

- Advantages:
 - » Allows for future resealing
 - » Reduces noise/wheel slap
 - » Uses less material
- Narrow joint accommodations
 - » 3/16 to 1/4 inch joint for cleaning and to better accept sealant
 - » Special fixtures for media blasting and filling joints
 - » Consider anticipated movements for required widths

Courtesy Seal/No Seal Group

What Have We Learned: Materials—Sealants

- Use quality materials meeting project needs
- Silicone (ASTM D5893)
 - » Non sag or self leveling
 - » Long-term performance in several ADOT studies (e.g., I-17, US 60, I-10)
- Hot-Poured (ASTM D6690, types I-IV)
 - » Standard or Low Modulus
 - » ADOT specifies Type II/III
 - » Moderate/mid-term performance

Hot-

Poured

What Have We Learned: Materials—Silicone

What Have We Learned: Materials—Backer Rod

- Helps establish proper joint shape factor
- Use closed-cell products (ASTM D5249)
 - Open cell not recommended
- Compatible with sealant
- 25% larger than joint width
- Do not stretch or puncture backer rod

Closed Cell (recommended) Open Cell (not recommended) 20

What Have We Learned: Proper Preparation

- Joint preparation/cleaning
 - » Media blast to remove slurry from sidewalls (both sides of joint)
 - Airblasting to remove any final debris
- Backer rod installation
 - » Fit snugly in joint

Courtesy Scott Eilken

Courtesy Scott Eilken

Media blasting

Courtesy Steve Tritsch

Airblasting

What Have We Learned: Proper Installation

- New concrete cured 7 days
- Joints "clean and dry"
- Weather conditions
 - » Ambient temperature (typ. 40 °F & rising)
 - » No precipitation
- Monitor HP sealant temperatures
- Fill from bottom up (limit air pockets)
- Proper tooling for silicone (non-sag)
- Proper recess
 - » Hot-poured: flush fill
 - » Silicone: 1/4 to 3/8 inch

Courtesy IGGA

Hot-Poured

What Have We Learned: Bonding

- Effective sealant bonding to joint sidewalls is critical
- What inhibits bond?
 - » Concrete not cured out
 - Joint faces not properly cleaned (sawing residue, dirt, dust, debris, old sealant, etc.)
 - » Moisture in joint
 - » Damage to concrete substrate
 - » Sealant/concrete incompatibility
 - » Oil/moisture in compressed air

Courtesy Scott Eilken

What Have We Learned: Relative Cost of Sealant Installation

applied pavement

What Have We Learned: Impacts of Chemical Deicers

Detrimental impacts of certain deicing chemicals

Courtesy CPTech Center

 Maintaining effective seal can help minimize effects

applied pavement

Where does it snow in Arizona?

What Have We Learned: Joint Resealing

- Reseal when existing sealant no longer functional
- Pavement not severely deteriorated
- In conjunction with other preservation activities

If joints were originally sealed, continue to keep those joints sealed

Closure

- Concrete pavement joint sealing has advanced in 100+ years
- Arizona has contributed to the state of the practice
- Some closing thoughts:
 - » Select sealant materials to meet specific project needs
 - » Keep joints as narrow as possible
 - Joint reservoir configurations (width, depth, recess) impact sealant performance
- » Effective preparation and installation critical to performance
- » Reseal in-service pavements when existing sealant no longer functional

Questions?

Kurt Smith

ksmith@appliedpavement.com

