

Introduction to the Center for Bio-mediated and Bioinspired Geotechnics (CBBG)

Ed Kavazanjian, Director and Hamed Kohodadadi Tirkolaei, Senior Investigator Arizona State University

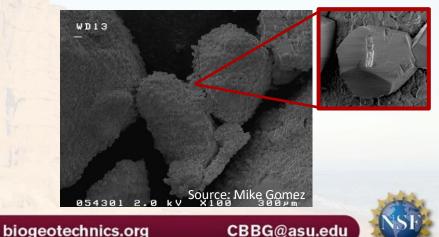
GeorgiaInstitu

biogeotechnics.org


Biogeotechnical Engineering

An emerging sub-discipline in geotechnical engineering that includes:

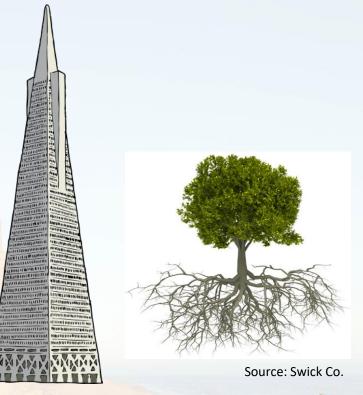
- <u>Bio-mediated Processes:</u> managed and controlled through biological activity (living organisms)
- <u>Bio-inspired Processes:</u> biological principles employed to develop new, abiotic solutions (no living organisms)


Bio-mediated Geotechnics

Modify soil using a biological process (living organism)

Example : Replace Portland cement by using bacteria to precipitate calcite

- soil improvement
- "bio-bricks"



Bio-Inspired Geotechnics

Use natural processes for inspiration

- Mimic biological processes
- Employ biological materials

Example : Can we make this building more stable by studying how this tree relies on its roots?

Center for Bio-mediated and Bio-Inspired Geotechnics (CBBG)

Seed funding provided by NSF

- Gen-3 ERC
- Research and education
- > \$35 million for 10 years

Four leading academic institutions

– ASU (lead), Georgia Tech, New Mexico State, UC Davis

Industrial Partners program

Consultants, Contractors, Owners, Agencies

REU and **RET** programs

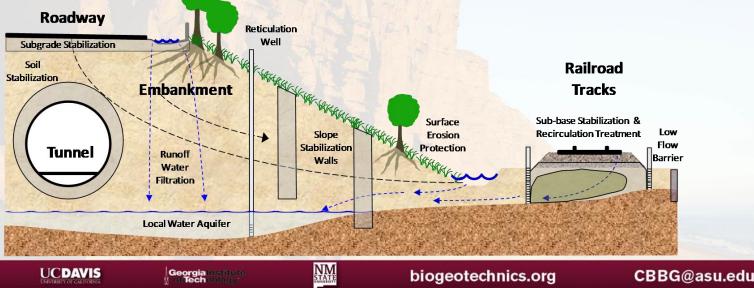
1.5

Center Advantages

biogeotechnics.org

Facilitates interdisciplinary study Bridge knowledge and communication gaps **Establishes necessary facilities Develops necessary workforce** Education and outreach programs **Disseminates information widely** Broad geographic distribution Accelerates integration into practice

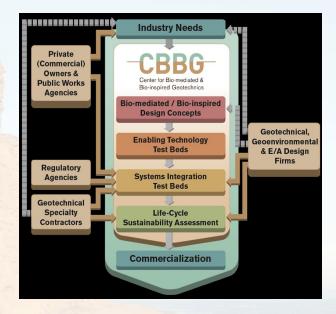
GeorgiaInstitut



ASI

CBBG Thrusts

- Hazard Mitigation
- Environmental Protection
- Infrastructure Construction
- Subsurface Exploration and Excavation



Industry Partner Program

Broad spectrum of stakeholders Engineers, Contractors, Owners, Agencies Input on research priorities Collaboration on research Reduced overhead Access to students

GeorgiaInstitute

UCDAVIS

CBBG Industry Partners

Industry partners provide input on strategic direction,

collaborate on research and development

The Biogeotechnical Premise

- Nature has developed many elegant biogeotechnical processes
 - Billions of years of trial and error
- These processes be used to address geotechnical problems
 - We can Learn from Nature

Georgia

Learning From Nature

Durable geologic deposits

GeorgiaInstitute of Technology

Resilient foundations

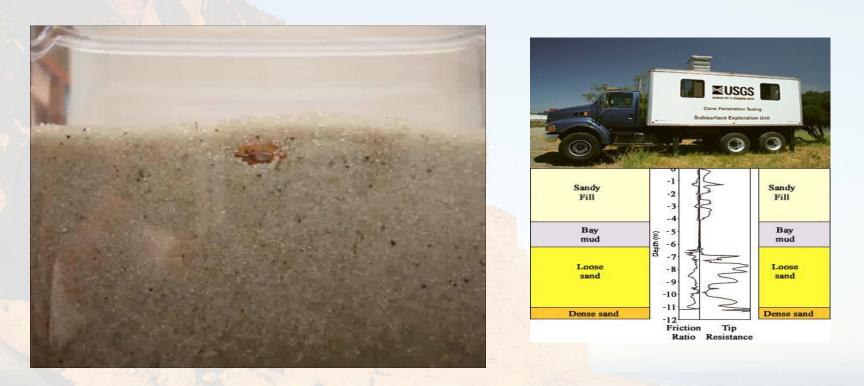
Efficient and safe penetration and tunneling

biogeotechnics.org

CBBBC Center for Bio-mediated & Bio-inspired Geotechnics

Learning from Nature: Can you dig it!

Video courtesy of Prof. Carlos Santamarina, Georgia Institute of Technology


GeorgiaInstitute

biogeotechnics.org

CBBG Learning from Nature - Penetrating Deep!

biogeotechnics.org

CBBG@asu.edu

Video courtesy of Prof. Carlos Santamarina, Georgia Institute of Technology

GeorgiaInstitute

NM STATE

UCDAVIS

CBBG Vision

Transform geotechnical engineering practice by:

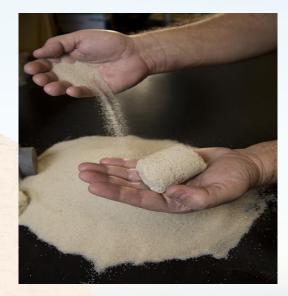
- Developing nature-compatible, sustainable solutions
 - Solutions of first resort
- Integrate geoenvironmental engineering into the mainstream

Inspire a new generation of geotechnical professionals

1.1.1.1

CBBG Bio-Geo-Chemo-Mechanical Processes

Mineral precipitation Chemical transformation **Biopolymer generation** Self-motile organisms Root support/reinforcement systems **Biogeotechnical challenge:** Mobilize these processes for beneficial use



Biogeotechnical Ground Improvement Technologies

Mineral (carbonate) precipitation Biofilms Biopolymers Root-inspired reinforcement and foundations Motile ("self-tunneling") probes Desaturation

Georgia

Key Biogeotechnology: Carbonate Precipitation

One of the most common mineral precipitation phenomenon in nature
Calcium carbonate (CaCO₃) most common
Most studied biogeotechnical mechanism
Increases strength, stiffness
Many CaCO₃ precipitation mechanisms

• Some anthropogenic

Many potential applications

Georgia

CBBG@asu.edu

11/18/ 2022 17

Carbonate Precipitation Processes that Operate on a Geologic Time Scale

Cemented sand Carbonate sediments Gypsum nodules Stalactites, stalagmites

https://upload.wikimedia.org/wikipedia/common s/5/59/Cliff_House_from_Ocean_Beach.jpg

GeorgiaInstitute

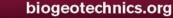
biogeotechnics.org

Carbonate Precipitation Processes that Operate on an Engineering Time Scale (Often adverse)

Mollusk shells

Clogging of water treatment plant filters

Mineral scale on pipes Fouling of well screens Clogging of drainage systems



respectyourself.org.uk

www.mendonomasightings.com/

The Biogeotechnical Challenge

Accelerate beneficial processes to occur in a time frame of interest and/or Induce adverse processes in a context where the effect is beneficial

GeorgiaInstitu

JennBredemeier.deviantart.com

Bio-inspired Geotechnics

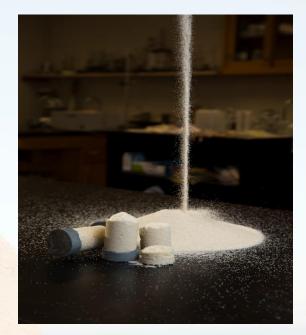
Potential Applications

Justanothercinemanic.tumbl.com

Georgia

UCDAVIS

Foundation support Erosion control **Slope stabilization Liquefaction** mitigation Stabilization of underground openings "Bio-bricks"


Engineered CaCO₃ Precipitation: "Biogeo Alchemy"

Turning sand into sandstone Precipitation of calcium carbonate (Calcite)

- Microbially
- Using an enzyme

Georgia

biogeotechnics.org

1.5

Carbonate Precipitation Mechanisms: Urea Hydrolysis

NH₃ + H₂CO₃

CBBG@asu.edu

+ H₂0

20H + 2NH

biogeotechnics.org

 $\rightarrow 2H_20 + CO_3^{2-}$

Several geochemical mechanisms

Urea hydrolysis reaction catalyzed by urease enzyme (10¹⁴ times _{CaCO3} + 2NH4CI < + CaCl2 faster)

 Generating alkalinity and CO₃⁻²

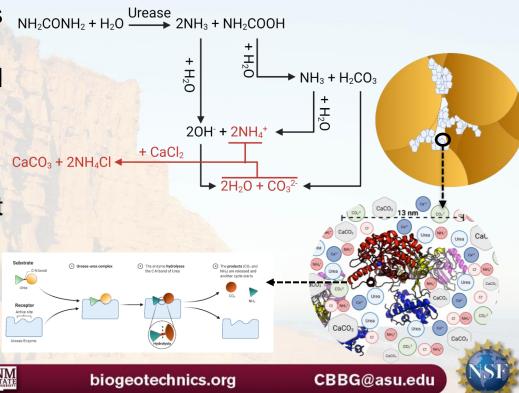
UCDAVIS

 Precipitation of carbonate minerals in presence of divalent cations (e.g. Ca2+)

GeorgiaInstitut

155

Carbonate Precipitation Mechanisms: Urea Hydrolysis

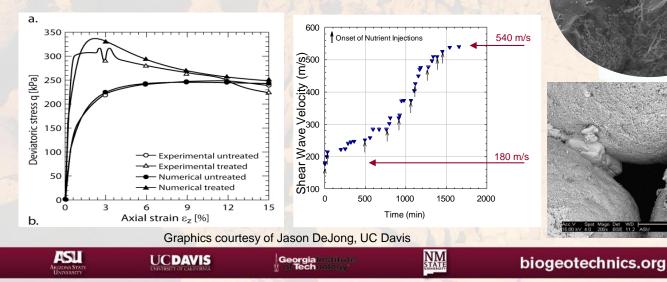

Source of urease enzyme:

- Free urease enzyme extracted from plants or microbes (EICP)
- Ammonium chloride by-product
- Toxic to soil and groundwater at high concentration
- Needs to be managed
 - Extracted and recycled

Georgia

Converted in-situ

UCDAVIS



Soil Improvement through Biocementation

Precipitation of calcium carbonate in soil pores

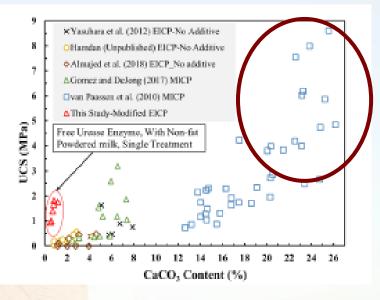
- Binds (cements) soil particles together (called biocementation)
- Improves strength and stiffness

MICP via Urea Hydrolysis

Highest reported strength gain

Up to 1500 psi with multiple treatment cycles

Challenges:

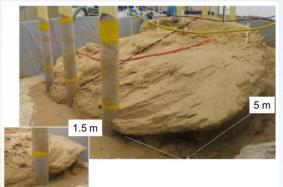

453

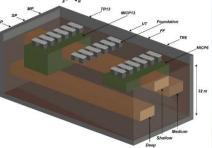
Microbial culture and activity

UCDAVIS

 Treatment uniformity: penetration of bacteria is limited to soils with pore size bigger than bacterial cells

GeorgiaInstitute

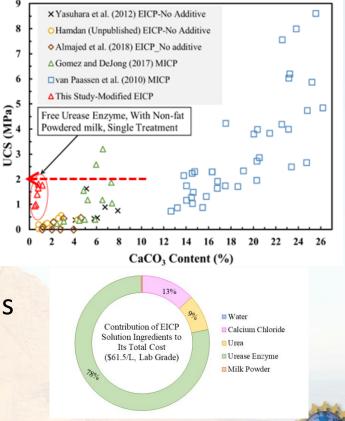

biogeotechnics.org



Application: MICP for Mass Stabilization

- Large tank tests at TU Delft .
- Stabilization of degraded MSE backfill by Soletanch in Europe
- Field testing by ASU in Toronto
- Centrifuge model tests at UC Davis
- ASU field tests pending in British Columbia
 - Stabilization of Fraser River embankment founda

EICP via Urea Hydrolysis


biogeotechnics.org

- No bacteria involved
- Penetrates finer-grained soils (e.g., silt)
- High strength at low CaCO₃ content
 <u>Challenge:</u>
- Cost of urease enzyme

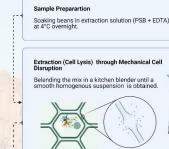
UCDAVIS

- Enzymes available in the market are mainly designed for sensitive applications (e.g. medical, food industry,...)
 - Usually highly purified and very expensive

GeorgiaInstitute

15.7

Cost Challenge: Crude Enzyme Extraction

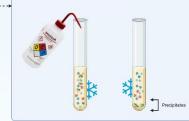

Four urease-rich plant were investigated:

Jack bean (dehusked), jack bean meal, soybean, watermelon seed (dehusked)

No advanced/costly extraction and purification techniques

UCDAVIS

Crude Extract


Crude extract was obtained after removal of suspended particles and fat through filtration of the suspension using cheese and glass wool and centrifugation

Purification through Acetone Fractionation

Addition of prechilled acetone (-20°C) to the crude extract to precipitate the target protein, and collecting the precipitates through centrifugation.

 Urease protein is insoluble in acetone, specially at low temperature Many small molecules which could interfere with urease are soluble in acetone Acetone can be washed off easily

Fractionation Yield

First fractionation yield: the precipitates were removed through centrifugation, and suspended in the extraction solution.

Second fractionation yield: the first fractionation yield was further purified by addition of prechilled acetone. The precipitates were then collected using centrifugation and suspended in extraction solution.

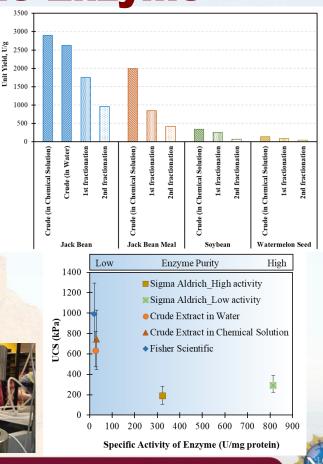
GeorgiaInstitute

lech

Cost Challenge: Crude Enzyme Extraction

biogeotechnics.org

Extracts from jack beans showed the highest:


urease content

Highest unit yield

(amount of enzyme per initial mass of bean)

Crude jack beans extract resulted in a comparable (and some cases a better) strength than commercial enzymes

Georgia

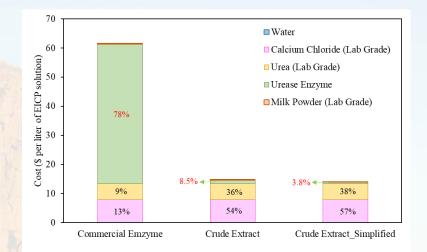
Cost Challenge: Crude Enzyme Extraction

A significant reduction in cost.

A simple extraction process that can be conducted in the field.

Commercial urease in EICP solution was replaced with crude jack bean extract.

GeorgiaInstitute


Enabled performing meso-scale experiments:

Biocemented columns

UCDAVIS

Fugitive dust control

451

biogeotechnics.org

Biocemented Columns via EICP

Concept: Create columns of cemented sand for ground improvement

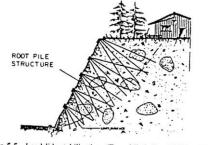
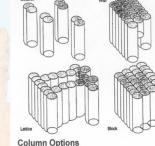
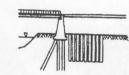



Figure 5-5 Landslide stabilization. (From Mitchell and Villet, 1987.)

Installed Lattice or Cellular Configuration



Road Embankment

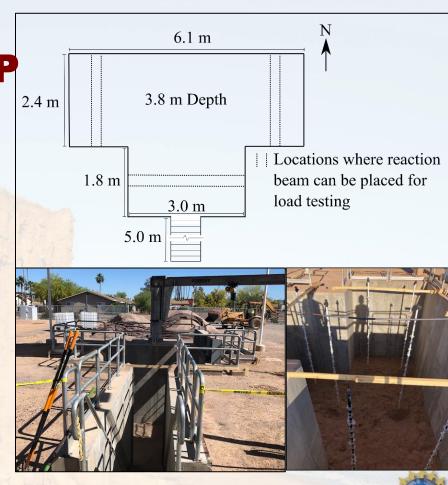
High embankment

stability

Bridge Abutment uneven settlement

biogeotechnics.org

FHWA Report no. FHWA-NHI-11-032


stability / settlement

CBBG Center for Bio-mediated & Bio-inspired Geotechnics Bio-company of the second seco

ASU Poly Campus test pit Seven field-scale columns

 1 – 3 ft diameter
 Conventional grouting approach

Enzyme extracted on site

Biocemented Columns via EICP: Exhumation

NM STATE

GeorgiaInstitute

UCDAVIS ENVERSION OF CALIFORNIA

EICP for Fugitive Dust Control

Worldwide air quality problem

- Due primarily to wind-blown soil
 - Not industrial emissions

Plagues many arid/semi arid areas

- Southwest US
- Eastern China
- North Africa

Causes serious health problems

EICP for Fugitive Dust Control

Traditional Dust Control

Water

1.5

- Short-lived
- Limited effectiveness

Salt solutions

• Environmentally unfriendly Synthetic polymers

GeorgiaInstitute

• Expensive

UCDAVIS

EICP for Fugitive Dust Control

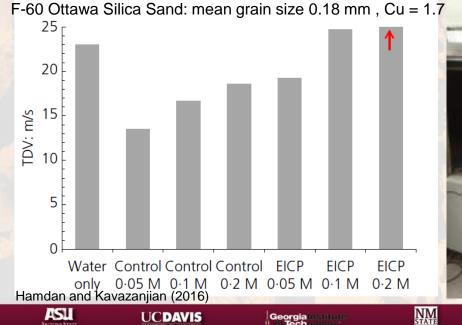
Concept: Create a wind-erosion resistant carbonate crust using a sprayed-on EICP solution

Advantages:

"One and done" (but for how long?)

Disadvantages

- Initial cost
- Potential environmental impact



EICP for Fugitive Dust Control: Lab Results

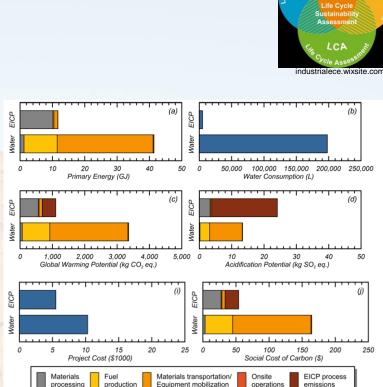
9" pan test

ASU/NASA Planetary Wind Tunnel Testing

EICP-treated pan maxed out the capacity of the wind tunnel.

EICP for Fugitive Dust Control: LCSA

Compare EICP and water for dust control using Life Cycle Sustainability Assessment (LCSA)


Cost

15.1

- Permanence/reversibility
 - Reversibility may be beneficial
- Energy consumption

UCDAVIS

Environmental impacts

EICP for Fugitive Dust Control: Test Sections Bio-inspired Geotechnics

Maricopa County landfills

- w/ SLR, FMI, Republic
- Spray on EICP solution
- First trial 2021 (refined techniques)
- Second trial 2022

Deployment of first trial plot

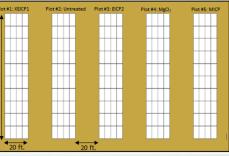
Dust Generation

Salton Sea

1.5

enter for Bio-mediated &

- w/Bureau of Reclamation
- Fallow agricultural land


UCDAVIS

Board of Regents TRIF funds

GeorgiaInstitut

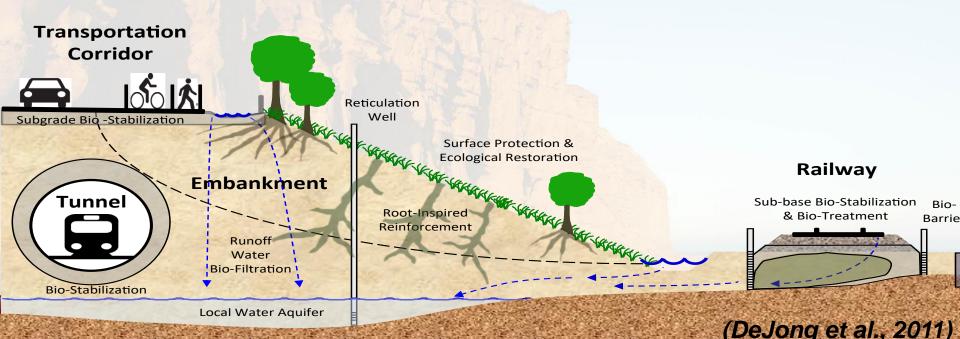
- Abandoned mine site
 - ADEQ ____

Layout of plots for second field trial

biogeotechnics.org

Other Biogeotechnical Applications

- Tunnel and excavation stability
- **Contaminated soil and groundwater remediation** Subsurface barriers for contaminant **Root-inspired foundations and reinforcement** Self-motile probes and sensors Bio-leaching metals (e.g., copper)



The Biogeotechnical Future

- Just beginning to explore opportunities
- Only a few to date, opportunities for much more

Thank you!

Questions?

GeorgiaInstitute

biogeotechnics.org

