Enabling more sustainable pavements using recycled plastic and Reactive Elastomeric Terpolymers (RET)

<u>CJ DuBois</u>¹, Roxanne Jenkins¹, Chris Wacinski² ¹Packing & Specialty Plastics, Dow Inc., Lake Jackson TX ²Ecologic Materials Corporation, Pueblo, CO

[®] ™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

DOES RECYCLED PLASTIC MAKE ECONOMIC AND ECOLOGICAL SENSE FOR PAVING?

- Recycled plastics have a broad range of polymer chemistries
 - > Critical these materials meet defined selection criteria
 - Compatibility with asphalt varies
 - Not all types of recycled plastic are suitable as asphalt modifiers
- Recycled plastic must improve the road performance
 - Not a virgin vs recycled material dynamic most polymers in packaging applications are plastomeric
 - Elastomeric polymers (SBS, RET) bridge performance gaps for unmodified asphalts
 - Must meet performance specifications i.e., engineering standards
 - Must follow existing construction best-practices i.e., "drop-in"
 - Must not have a negative impact on asphalt re-recyclability
- Multiple ways to participate in via mechanical recycling
 - Target hard to recycle plastics like <u>PE-rich film</u> largest potential impact
 - Multiple ways to introduce material wet vs dry dynamic

Advancing Sustainable Materials Management: Facts and Figures Report, EPA (2017)

MAJOR CLASSES OF PLASTICS Not every plastic as appropriate as an asphalt modifier!

Dow

HOW DO WE ADDRESS KNOWLEDGE GAPS CAPTURED BY AI AND NAPA?

Understand the material being used

- Choose clean, sorted PE-rich sources (i.e., multilayer food packaging >70% PE)
- Address incompatibility of recycled plastic and asphalt binder
 - > Wet process appropriate balancing of compatibilizer vs recycled plastic enhances storage stability
 - Dry process use of a compatibilizer allows for full incorporation of PE-rich sources and reduces the need for other additives

Validate performance - rutting and fatigue/cracking resistance

- Binder meet AASHTO M320 including Plus Specifications
- Mix meet Balanced Mix Design criteria including index-based cracking tests
- Prove compatibility between recycled plastics and other additives used in asphalt binders including RAP
 - Successful incorporation up to 30% RAP (at this point) without rejuvenators
- Demonstrate field performance to highlight no changes to current construction practice is required
 - > Numerous field projects dating to early 2019 no early signs of distress observed
 - Reduced nuisance odors during construction lower sulfur emissions
- Generate long-term pavement performance data vs traditional materials

VISUALIZING RECYCLED PLASTIC INCOMPATIBILITY

PE-only modified asphalt shows phase separation

RET significantly reduces PE domain sizes demonstrating compatibilization

Low Magnification Epifluorescence Microscopy

No specific domains visible

Large domains visible

No specific domains visible

Domains smaller than RPE control

MULTIPLE DEMONSTRATION PROJECTS WITH MORE PLANNED

Location	Binder Specification	Туре	Size	Waste Plastic Diverted	Additional comments	
Freeport, TX	TXDOT PG70-22	Wet	~ 2,600 ft ²	1,700 lbs ~129k single-use grocery bag eq.	Two roads at Dow Texas Operations Martin Asphalt, American Materials, and Vernor	
Midland County, MI	MDOT PG64-28	Wet	136,390 ft ²	10,400 lbs ~787k single-use grocery bag eq.	Four county roads, two parking lots at Dow Headquarters Winpak, Central Asphalt and K-Tech Specialty Coatings	
Saginaw Valley State University, University Center, MI	MDOT PG64-28	Wet	60,000 ft ²	1600 lbs ~121k single-use grocery bag eq.	Large event parking lot Winpak, Central Asphalt and K-Tech Specialty Coatings	
Orange, TX	TXDOT PG76-22	Wet	3,480 yd²	1,830 lbs ~138k single-use grocery bag eq.	Two roads at Dow Sabine River Operations; Martin Asphalt and Gulf Coast	
Holland, MI	MDOT PG64-28	Wet	151,039.17 yd ²	12,500 lbs ~946k single-use grocery bag eq.	Meijer grocery chain parking lot and gas station PADNOS, K-Tech Specialty Coatings, and Reith-Riley	
University of Missouri, Columbia, MO	MODOT PG64-28	Dry	Three 0.5-mile test sections	24,000 lbs ~1,816k single-use grocery bag eq.	Three field test sections using different PCR levels University of Missouri and MODOT.	
National Center for Asphalt Technology, Auburn, AL	PG76-22	Wet	200 ft test section	1000 lbs ~76k single-use grocery bag eq.	Additive Group study – part 1 FHWA, ALDOT, FDOT, MDOT, TDOT, TXDOT funded	
Solterra, Buckeye, AZ	AZ DOT PG64-28	Dry		~2000 lbs ~152k single-use grocery bag eq.	Loading zone at HMA plant Ecologic Materials, Western Emulsions, Solterra Materials, and Sunland	
MnROAD, Minnesota	MNDOT PG58H-28	Wet	400 ft test section	~500 lbs ~38k single-use grocery bag eq.	Additive Group study - part 2 FHWA, ALDOT, FDOT, MDOT, TDOT, TXDOT, DOW funded	
Stockyard Rd, Pueblo CO	CODOT PG64-28	Dry	~0.25-mile test section	4000 lbs ~304k single-use grocery bag eq.	Test section to ensure mix, equipment and supply chain readiness Ecologic Materials, County of Pueblo, Owens Corning, Beltramo and Sons	
Siloam Rd, Pueblo CO	CODOT PG64-28	Dry	3.5 lane-miles	27,000 lbs ~2,045k single-use grocery bag eq.	Two-lane county road with medium/heavy agricultural traffic Ecologic Materials, County of Pueblo, Owens Corning, Beltramo and Sons	

Total

>94k lbs or ~7.2MM single-use grocery bag eq.

CASE 1 – RET + PCR BLENDS PASS SEPARATION TEST

- ASTM D5976 48-hour separation test
- High values indicate polymer incompatibility, i.e. separation from the binder

CASE 1 - RET + PCR BLENDS EXHIBIT HIGH ELASTICITY

- Texas 539-C 10°C elastic recovery
- All RET/PCR blends exceed minimum PG 70-22 specification (30+%) and some blends meet PG82-22 (60+%)

CASE 1 - RET + PCR BLENDS BLENDS SHOW INCREASED RUTTING RESISTANCE

*Numbers in x-axis denote weight %; first PCR/second RET

CASE 1 - RET + PCR BLENDS MEET LOW TEMPERATURE PERFORMANCE

Values below 300 MPa indicate resistance to thermal cracking

Values above 0.300 indicate resistance to thermal cracking

CASE 1 - MINIMAL EFFECT ACROSS ALL PE-RICH PCR DENSITIES

- No effect of density observed for high temperature performance
- All polymer modified formulations demonstrated improvement of low temperature properties

 No observable effect of density for nonrecoverable creep studies

Wet process - 1.5 wt% PCR + 1.5 wt % RET

- "WET" hybrid formulation:
 - > 1.0% Avangard Natura PCR LLDPE
 - ▶ 1.6% ELVALOY™ RET
 - > 0.32% PPA as co-reactant
- Experimental design
 - Unmodified control binder Ergon PG67-22
 - PMA control binder Ergon PG76-22 SBS
 - SBS and RET+PCR had comparable MSCR Jnr and %R
 - No cigar tube separation observed with R&B, upper PG, and MSCR measurements
- Mix Design
 - > 12.5 mm NMAS, 20% RAP
 - BMD with HWTT and IDEAL-CT
 - < 12.5 mm rutting at 20k passes</p>
 - ✓ > 50 CT_{index}

Measurement	PG 67-22 Unmodified	PG 76-22 SBS Modified	LLDPE and ELVALOY™ RET Modified
PG Grade	67-22	76-22	76-22
True Grade	68.7-23.4	78.1-23.4	81.8-24.0
Low-temp. Grade (stiffness)	-25.7	-25.5	-25.3
Low-temp. Grade (m-value)	-23.4	-23.4	-24.0
PAV Delta Tc	-2.4	-2.1	-1.4
% Recovery, 3.2 kPa	1.43	69.19	68.77
J _{nr} 3.2 kPa (kPa⁻¹)	2.02	0.20	0.16
Viscosity, 135°C (Pa s)	0.51	1.45	2.23

- Improved rutting resistance due to polymer modification and adding dry rPE
- Hybrid-process PMA (more PCR) > wet-process PMA > unmodified

Note: SBS dosage ~2x RET dosage

Yin et al. Performance Characterization and Fatigue Damage Prediction of Asphalt Mixtures Containing Polymer Modified Binders and Recycled Plastics, 2022 AAPT Annual Meeting

- No statistical discrimination between unmodified and PMA mixtures
- No impact on intermediate-temperature cracking resistance from polymer modification and adding dry rPE

IDEAL-CT

Note: SBS dosage ~2x RET dosage

Yin et al. Performance Characterization and Fatigue Damage Prediction of Asphalt Mixtures Containing Polymer Modified Binders and Recycled Plastics, 2022 AAPT Annual Meeting

- Improved fatigue resistance from polymer modification
- Wet-process RET + rPE > SBS > RET > unmodified ≈ hybrid-process PMA
- Reduction in cyclic fatigue resistance with dry process

Cyclic Fatigue

Note: SBS dosage ~2x RET dosage

Yin et al. Performance Characterization and Fatigue Damage Prediction of Asphalt Mixtures Containing Polymer Modified Binders and Recycled Plastics, 2022 AAPT Annual Meeting

V01

CASE 3 – UNIVERSITY OF MISSOURI STUDY

- Balanced Mix Design targets:
 - ➢ CT_{INDEX} >= 32
 - HWTT RUT DEPTH @ 20,000 PASSES <= 12.5 mm</p>
- Five iterations to reach to a final balanced mix design
- Contains 30% RAP + 30% SLAG
- All CT values were above threshold
- Best performer involved hybrid process
 - Wet PG64-28 RET (1.0%)
 - > 0.5 wt % dry PCR vs mix
 - > 3% Evoflex CA-4 rejuvenator vs binder
 - RET compatibilization enabled remova

CASE 3 – UNIVERSITY OF MISSOURI STUDY

CASE 4 – STOCKYARD, AND SILOAM ROADS PUEBLO CO

- Dry process
- Binder target: CDOT PG64-28
- Stockyard road
 - 400 mix ton test section (4,000 lbs rPE*)
- Siloam road
 - 1.75-mile section plus 0.25-mile control (27,000 lbs rPE)
- No significant mix or placement issues encountered
- Testing in-progress
- ~2.4 M grocery bags equivalent diverted from landfill

- RET enables RPE incorporation mitigating separation when properly formulated
- There is no compromise on performance properties when RPE is appropriately dosed with RET-PMA including
 - Binder specifications
 - Balanced Mix Design
- The total amount of polymer (RET + RPE) positively impacts
 - Increases upper PG grade
 - Reduces Jnr including meeting V and E grades
- Field projects have shown these materials are "drop-ins" to existing best practice production and construction

THANK YOU