Innovations in Asphalt Concrete Cracking Tests

Progress toward better prediction of cracking

Cracking in asphalt pavements is the new epidemic problem

Less of this...

More of those...

How can you design a mix to survive challenging conditions?

Mixes are becoming quite different too... 97% recycled mix (3% binder is the only virgin)

Mixes for Rolling Resistance (from Europe)

SMA8 REF Reference mix PEN70/100 AC 7% Air void 2.7%

SMA8 COOEE Better rolling resistance PEN40/100 AC 7.4% Air void 2.5% SMA6 COOEE Best rolling resistance PEN40/100 AC 7.9% Air void 2.4%

Can we find an optimized mix to reduce fuel, perform good, and cost-effective?

Optimizing Mixes

for Performance, Production, Economy, and Sustainability

Cracking in Asphalt Mixes with Illinois Flexibility Index Test (I-FIT)

- Modified SCB fracture test conducted at 25°C
- LVDT control load rate @ 50 mm/min
- Parameters calculated:
 - Fracture energy (G_f)
 - Flexibility index (FI)
- AASHTO specification TP 124 was developed

Typical Response from the Test

 Load-displacement curves and fracture energy changing with increasing RAP/RAS

Summary of Laboratory Produced Mixes

Mix ID	Mix Name	Binder Grade	RAP (%)	RAS (%)	ABR (%)	AC (%)	VMA (%)
L3	N90 0 CG	70-22	-	-	-	6.0	15.3
L4	N90 0 CG	64-22	-	-	-	6.0	15.3
L5	N90 30 CG S1	70-22	-	7	29.8	6.0	15.3
L6	N90 30 CG S1	58-28	-	7	29.8	6.0	15.3
L7	N90 20 CG S1	58-28	-	5	21.2	6.0	15.3
L8	N90 10 CG S1	64-22	-	2.5	10.5	6.0	15.3
L9	N90 30 CG S2 AS	58-28	11	5	30.5	6.0	15.2
L10	N90 60 CG S2 AS	52-34	40	7	60.8	6.1	15.2
L11	N90 0 CG AS	64-22	-	-	-	6.0	15.3
L12	N90 30 CG S2 AS	58-28	-	7	30.6	6.0	15.2
L13	N90 30 CG S1 AS	58-28	-	7	29.8	6.0	15.3

Cracking Susceptibility and ABR

10

What did it take to develop a performance-related test?

- Test geometry and parameter optimization
- Meaningfulness
- Discrimination potential (precision)
- Ruggedness and robustness
- Theoretical validation
- Field validation
- Thresholds and implementation

Why Intermediate Temperature?

Best discrimination potential at intermediate temperatures 25 to 50 mm/min

Development of the Test using DIC/FEM

Compressive Fields at Long Notches

For long notches, compressive fields under loading head governs crack path

14

Microstructure and Damage

FPZ (Temperature and RAS Effect)

FHWA's ALF Experiments

Lane Mix V	VMA Grade	Cycles to Failure		
1 Control	Grade			
1 Control	- PG64-2		ALL SUP ALL SA	
		.2 368,254	Best	
9 20% ABB F	oam PG64-2	270,058		
6 20% ABR	PG64-2	.2 122,363		
4 Ch	emical PG64-2	.2 88,740		
8	PG58-2	.8 –	Increasing	
11 40 % ABR Ch	emical PG58-2	8 81,044	ABR	LANE1 (PG64-22)
2 with RAP Fo	aming PG58-2	.8 -		D%RAP
5	- PG64-2	2 23,005		
3 20 % ABR	PG <u>64-2</u>	.2 36,946		*
7 with RAS	PG58-2	.8 42,399	Worst	24

Results

Field Projects for Validation

2013 Projects: A – 26th St. B – Harrison

C – Richards

D – Wolf

2014 Projects: 1 – Crawford 2 – US 52 Section 1

2015 Projects: 3 – US 52 Section 2 4 – US 52 Section 3 5 – Washington

Scaling from Lab to Field Predictions

to specifications and implementation

$log\beta = -0.61119 - 0.017638W_c$ $N_f = 0.00432 \cdot k'_1 \cdot C \left(\frac{1}{\varepsilon_t}\right)^{3.9492} \left(\frac{1}{E}\right)^{1.281}$	Wheel Path
Surface layers = 50-300 mm Ω_g^3 Ω_g^2 Ω_g^3 Base = 250-500 mm Ω_G Subgrade \downarrow	

Small-scale laboratory experiments

Alternative approach is to run the experiments at large or full-scale

Cracking in full-scale

Overlay Optimization

- Is there a unique recipe for overlay strategy?
- Which one would perform better?
- Are there other options?
- How can we know?
 - Modeling (maybe???)
 - Running actual experiments in fullscale

Leave the old HMA in place and put an overlay of 2¹/₄ inch

Mill to bare concrete and put an overlay of 2¹/₄ inch

Testing at Full-Scale for Overlay Optimization

Alternative overlay scenarios are now tested as part of an IDOT project in Illinois

Illinois Center for Transportation's loading facility used in testing base layers.

Large-scale testing facility for slab experiments

Overlay Lift Configurations

15+ overlay scenarios for Interstate and Non-Interstate pavements

Support overlay policy development at IL

Control Scenario (3.75 in)	Scenario # 5 (3.0 in)		
IL-9.5 Surface Course @ 1.50 in	SMA 9.5 Surface Course @ 1.50 in		
IL-19.0 Binder Course @ 2.25 in	IL-9.5 Surface Course @ 1.50 in		
Concrete Slab	Concrete Slab		
Scenario # 2 (3.5 in)	Scenario # 1 (3.5 in)		
SMA 9.5 Surface Course @ 1.50 in	IL-9.5 Surface Course @ 1.50 in		
SMA 12.5 Binder Course @ 2.00 in	IL-12.5 Binder Course @ 2.00 in		
Concrete Slab	Concrete Slab		
Concrete Slab Scenario # 3 (4.25 in)	Concrete Slab Scenario # 4 (5.00 in)		
Concrete Slab Scenario # 3 (4.25 in) SMA 12.5 Binder Course @ 2.00 in	Concrete Slab Scenario # 4 (5.00 in) SMA 12.5 Binder Course @ 2.00 in		
Concrete Slab Scenario # 3 (4.25 in) SMA 12.5 Binder Course @ 2.00 in IL-19.0 Binder Course @ 2.25 in	Concrete Slab Scenario # 4 (5.00 in) SMA 12.5 Binder Course @ 2.00 in IL-19.0 Binder Course @ 3.00 in		
Concrete Slab Scenario # 3 (4.25 in) SMA 12.5 Binder Course @ 2.00 in IL-19.0 Binder Course @ 2.25 in Concrete Slab	Concrete Slab Scenario # 4 (5.00 in) SMA 12.5 Binder Course @ 2.00 in IL-19.0 Binder Course @ 3.00 in Concrete Slab		

AZ's full-scale testing system

to make rapid and meaningful impact on AZ's infrastructure assets

A Full-Scale Testing System for Pavements

- Applies loading through dynamic actuators carried by a portable crane
- Innovative test bed design
- Allows actual truck travel for response monitoring

ASU Prototype

Germany's Federal Highway Research Institute (BASt)

Thank you!

hasan.ozer@asu.edu

Development of Flexibility Index (FI)

- A practical cracking index to discriminate between mixes
- An empirical correlation between brittleness and rate of crack growth is exploited to formulate the index parameter

Flexibility Index (FI) = $G_F \times \frac{1}{abs(m)}$ Fl describes overall pattern of the load-displacement curve.

Fracture at Intermediate Temperatures

Spurious Inelastic Dissipation

- Extraction of strain history in the farfield areas
 - Loading head and supports
 - Bulk material away from crack front
- Evaluate strain levels and recovery in these areas
- Quantify the effect with DIC data and numerical simulations

Effect of RAS at the Crack Front

Mix / Test Condition	L4 (0%RAS)	L6 (7%RAS)	L9 (7%RAS)
-12°C, 0.7mm/min 0.0015 -0.0003			
25°C, 6.25mm/min 0.015 -0.003			
25°C, 50mm/min 0.015 -0.003			Smm