PavementDesigner.org

PavementDesigner.org – Concrete Pavement Design for Municipal, Industrial, and Parking Facilities

16th Pavements and Materials Conference Tempe, AZ November 20, 2019

Eric Ferrebee, P.E. Director of Technical Services American Concrete Pavement Association

PavementDesigner

Home

-

0

8

PavementDesigner Project Leaders

- Industry Team Partners
 - Wayne Adaska, P.E.
 - Portland Cement Association
 - Brian Killingsworth, P.E.
 - National Ready Mix Concrete Association
- Additional Support
 - Jim Mack, P.E. & Tyler Speakmon, PhD (семех)
 - Feng Mu, PhD, P.E. (PNA Construction Technologies)
 - Randy Riley, P.E. & Jim Powell, P.E.
 - ACPA State/Chapter Associations

Overview and Background

- ACPA, NRMCA, and PCA partnership, with a contribution from the RCC Council to develop a website application to design cement-based solutions for:
 - Municipal Streets and Local Roads
 - Parking Lots
 - Intermodal/Industrial Facilities
- Design guidance and tools for:
 - Jointed-Plain Concrete Pavements
 - Continuously Reinforce Concrete Pavement
 - Concrete Overlays
 - Composite Pavements
 - Roller Compacted Concrete
 - Cement Modified Soils
 - Cement-Treated Base
 - Full-Depth Reclamation

PavementDesigner.org

Bringing Online the Best of the Best Available Design Tools

Summary –

- Primary audience is city, county, and consultant engineers who design pavements
- Secondary audience is professors and students
- Unifies design methods, providing promoters with a single source to direct target audience to for consistent answers
- Fills a design void for some products
- Web-based platform, appealing to existing and future generations of design engineers...
- ...with broad industry partner support!
- **FREE** and easily accessible!

PCA. America's Cement Manufacturers*

PARKING LOTS

Old Ways of Designing Parking Lots

- AASHTO 93
- ACI 330R-08 & 330R-19
 - Guide for Concrete Parking Lots
- StreetPave

PavementDesigner.org

American Concrete Institute®

ACI 330

Table 3.1—Subgrade soil types and approximate support values (Portland Cement Association 1984a,b; American Concrete Pavement Association 1982)

Type of soil	Support	k, psi/in.	CBR	R	SSV
Fine-grained soils in which silt and clay-size particles predominate	Low	75 to 120	2.5 to 3.5	10 to 22	2.3 to 3.1
Sands and sand-gravel mixtures with moderate amounts of silt and clay	Medium	130 to 170	4.5 to 7.5	29 to 41	3.5 to 4.9
Sand and sand-gravel mixtures relatively free of plastic fines	High	180 to 220	8.5 to 12	45 to 52	5.3 to 6.1

3R = California bearing ratio; R = resistance value; and SSV = soil support value. 1 psi = 0.0069 MPa, and 1 psi/in. = 0.27 MPa/m.

Table 3.2-Modulus of subgrade reaction k

Substade k		Sub-base	thickness				
value, psi/in.	4 in.	6 in.	9 in.	12 in.			
		Granular aggi	regate subbase	•			
50	65	75	85	110			
100	130	140	160	190			
200	220	230	270	320			
300	320	330	370	430			
		Coment-treated subbase					
50	170	230	310	390			
100	280	400	520	640			
200	470	640	830	_			
		Other treat	ed subbase				
50	85	115	170	215			
100	175	210	270	325			
200	280	315	360	400			
300	350	385	420	490			

⁶For subbase applied over different subgrades, psi/in. (Portland Cement Association 1984a,b; Federal Aviation Administration 1978). Note: 1 in. – 25.4 mm, and 1 psi/in. – 0.27 MPa/m.

e 3.4—Twenty-year design thickness recommendations, in. (no dowels)

_		k = 500 psi/in. (CBR = 50; $R = 86$)			R = 86)	k = 400	k = 400 psi/in. (CBR = 38; $R = 80$)			k = 300 psi/in. (CBR =26; R = 67)			
_	MOR, psi:	650	600	550	.500	650	600	550	500	650	600	550	500
_	A (ADTT=1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
-	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
_	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
- fic	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
– ory	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
-	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
_	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
_	$D (ADTT = 700)^{\dagger}$	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
_		k = 200) psi/in. (C	BR = 10; I	R = 48)	k = 10	0 psi/in. (0	CBR = 3; R	? = 18)	<u>k</u> = 5	0 psi/in. (O	CBR = 2; h	t = 5)
_	MOR, psi:	650	600	550	.500	650	600	550	500	650	600	550	500
n	A (ADTT=1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
	A (ADTT = 10)	45	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
Traffic	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
category	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	$D (ADTT = 700)^{\dagger}$	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0

*ADTT = average daily truck traffic. Trucks are defined as vehicles with at least six wheels; excludes panel trucks, pickup trucks, and other four-wheel vehicles. Refer to Appendix A. k = modulus of subgrade reaction; CBR = California bearing ratio; R = resistance value; and MOR = modulus of rupture.

Parking Lot Design

- ACI 330R-08 Guide based on StreetPave (PD's predecessor) design runs
- StreetPave is another accepted design methodology for Parking Lots
- New guide (ACI 330-R18) is based off PD design runs

Parking Lot Design with PavementDesigner

- PavementDesigner's

 Parking design uses a
 slightly modified version of
 the Street's Module for the
 sake of simplicity
 - Allows for various design lives, reliabilities, and percent slabs cracked at the end of the design life

MUNICIPAL STREETS & LOCAL ROADS

Municipal Street Design with PavementDesigner

- Overlays
 - Bonded and Unbonded
 - On Asphalt and Concrete
- Full-Depth Concrete
 JPCP
 - RCC
 - CRCP
- Composite Pavements

Other Ways of Designing Municipal Streets

- AASHTO 93
- Pavement ME
- ACI 325.12R-02
 - Guide for Design of Jointed Concrete Pavements for Streets and Local Roads
- StreetPave

AASHTO 93

- Wholly empirical AASHO Road Test
- Limited inference space:
 - Materials
 - Structural sections
 - Soils
 - Traffic

Performance Estimated Subjectively

Present Serviceability Index (PSI)

- 4.0 5.0 = Very Good
- 3.0 4.0 = Good
- 2.0 3.0 = Fair
- 1.0 2.0 = Poor
- 0.0 1.0 = Very Poor
- "Failure" at the Road Test considered @ 1.5
- Typical U.S. state agency terminal serviceability in practice = 2.5

PERCENT SURVIVING WITH PSI ABOVE 2.5

Don't Just Take My Word...

GAO	United States General Accounting Office Report to the Secretary of Transportation
November 1997	TRANSPORTATION INFRASTRUCTURE
	Highway Pavement Design Guide Is Outdated
	THE REAL PROPERTY OF THE REAL

"The current design guide and its predecessors" were largely based on design equations empirically derived from the observations AASHTO's predecessor made during road performance tests completed in 1959-60. Several transportation experts have criticized the empirical data thus derived as outdated and inadequate for today's highway system. In addition, a March 1994 DOT Office of Inspector General report concluded that the design guide was outdated and that pavement design information it relied on could not be supported and validated with systematic comparisons to actual experience or research." ... this is why Pavement ME exists!

PavementDesigner.org

GAO/RCED-98-9

AASHTOWare Pavement ME Design

- Developed for Highways
 - NOT street, road, parking lot, etc.
- Complex
- Expensive

Recent Files

Projects

🖃 🔔 Project 1

🔽 Traffic

DX AASHTO DARWin-ME Version 1.0 Build 1.0.18 (Date: 8/31/2011)

Project1:Project Project1:Traffic

New Pavement

Jointed Plain Concrete F -

General Information

Design type

Pavement type

New Open SaveAs

Save SaveAl Close Exit. Bun Batch Import Export Undo Redo Help

Performance Criteria

ASHTOWare

Paveme

▼ ×

Reliability

Limit

63

JPCP Calibration – **BIG INF. SPACE!**

AASHTO 93 vs. ME

OUTPUTS, OUTPUTS, OUTPUTS!!!

Design Outputs

Terminal IRI (in/mile)

Criterion

Satisfied?

Pass

Pass

Pass

Design Inputs

Design Life: 20 years Design Type: JPCP

Design Structure

Layer type	N
PCC	JPCP D
Flexible	Default
Cement_Base	Cement
Subgrade	A-7-6
Subgrade	A-7-6

Design Outputs

Distress Prediction St

Mean joint faulting (in) JPCP transverse cracking (percent slabs) Distress Charts

Distress Prediction Summary

Distress Type

Reliability (%)

Target

90.00

90.00

90.00

Achieved

99.92

99.90

91.91

Distress @ Specified

Reliability

Target

172.00

0.12

5.00

Predicted

117.99

0.07

4.61

2.00

ACI 325

- Limited design charts
- New guide based on PavementDesigner runs

Table 3.4—Twenty-year design thickness recommendations, in. (no dowels)

		k = 500	0 psi/in. (C	BR = 50; I	R = 86)	k = 400	0 psi/in. (C	CBR = 38; R = 80) k = 300 psi/in. (CBR =26; R = 67)					
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT=1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
	A(ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
Traffic	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
category	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	$D(ADTT = 700)^{\dagger}$	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		k = 200	0 psi/in. (C	BR = 10; I	R = 48)	k = 10	0 psi/in. (0	CBR = 3; R	= 18)	k = 5	0 psi/in. (0	CBR = 2; R	(= 5)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT=1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
	A(ADTT = 10)	4.5	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
Traffic	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
category	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6,5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	$D\left(ADTT=700\right)^{\dagger}$	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0
ADTT - av	verage daily truck traffic s of subgrade reaction; (. Trucks are CBR – Cali	e defined as y fornia bearin	whicles with $g_{ratio} = R = 1$	at least six resistance v	wheels; exch alue; and M	udes panel tr OR – modul	ucks, pickup us of ruptur	trucks, and	other four-w	wheel vehick	es. Refer to /	Appendix A.

PavementDesigner for Roadways

- Roots date back to the 1960s
 PCA Method
- Tailored for streets and roads
- Failure modes are cracking and erosion

Municipal Street Design with PavementDesigner

- Design for Overland Parkway with ~100 trucks/day
- Existing Subgrade is poorly graded silt (A-5)

Home

New Design

My Designs

Welcome to Pavement Designer, a free web-based pavement design tool for streets, local roads, parking lots, and intermodal/industrial facilities.

Best viewed using Chrome on Windows or Safari for MacOS.

Start Designing

0 Resources

Terms of Service

Privacy Policy

Terms of Service

Home

New Design

My Designs

Select Project Type

LOGOUT

PARKING

CONCRETE STREETS

A long-lasting solution for conventional over the road traffic. This module can be used to design jointed plain concrete pavement (JPCP), continuously reinforced concrete pavement (CRCP), roller-compacted concrete pavement (RCC), overlays, and composite pavements with stabilized bases and soils. This module should be used for the design of county, town, and city streets.

IN THE OTHER ADDRESS OF

G Resources

Support

Terms of Service

INTERMODAL

A REAL PROPERTY AND A REAL

Home

< Select Project Type

Select Street Project Type

LOGOUT

CONCRETE Concrete Streets provide a long-lasting pavement for city streets and local roads. This module can be used to

design conventional jointed

plain concrete pavements (JPCP), roller-compacted

concrete pavements (RCC).

or continuously reinforced

METHODOLOGY: ACPA StreetPave/PCA Method,

AASHTO 93

 $\overline{\nabla}$

concrete pavements (CRCP).

New Design

Resources

Privacy Policy

OVERLAY

with the state manufact

Terms of Service

NEW

COMPOSITE

LOGOUT

100

PAVEMENT STRUCTURE 2

Home

O

My Designs

0

Resources

Ø

Traffic Growth Rate

Directional Distribution

Design Lane Distribution

(% per year)

(%)

(%)

Help 🕜

+-+	Single		Tandem		Tridem
AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS
24	0.07	24	0.07	24	0.07
24	1.6	24	1.6	24	1.6
22	2.6	22	2.6	22	2.6
20	6.63	20	6.63	20	6.63
18	16.61	18	16.61	18	16.61
16	23.88	16	23.88	16	23.88
14	47.76	14	47.76	14	47.76
12	116.76	12	116.76	12	116.76
10	142.7	10	142.7	10	142.7
8	233.6	8	233.6	8	233.6

TRAFFIC SUMMARY DETAILS

Support

V

Resources

*The descriptors high, medium, or low refer to the relative weights of axle loads for the type of street or road; that is, "low" for a rural Interstate would represent heavier loads than "low" for a secondary road.

700-5,000

3.000-

15,000+ 4,000-

50.000+

3%-15%

5%-25%

10%-30%

40-1.000

300-5.000+

700-10.000+

26

30

34

44

52

60

** Trucks -- two-axle, four-tire trucks excluded.

streets and primary roads (low*)

and rural interstate (medium to high*)

Arterial streets and primary roads (medium*), expressways

Arterial streets, primary roads, expressways (high*), urban

and urban and rural interstate (low to medium*)

Collector

Minor Arterial

Major Arterial

EMENT STRUCTURE

LOGOUT

PAVEMENT STRUCTURE 2

TRAFFIC SUMMARY DETAILS

	Single		Tandem	+-+	Tridem
AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS
26	0.07	44	1.16	62	0
24	1.6	36	7.76	56	0
22	2.6	40	38.79	50	0
20	6.63	32	54.76	44	0
18	16.61	28	44.43	38	0
16	23.88	24	30.74	32	0
14	47.76	20	45	26	0
12	116.76	16	59.25	20	0
10	142.7	12	91.15	14	0
8	233.6	8	47.01	8	0

Change Design Type

Privacy Policy

Terms of Service

Street O Concrete

Collector

25

Change Design Type

TRAFFIC

Design Life

Trucks/Day

Traffic Growth Rate

Directional Distribution

Design Lane Distribution

User Defined Traffic Info

V

V

(% per year)

(%)

(%)

(Years)

PAVEMENT STRUCTURE 2

Project Type: Home

200

LOGOUT

New Design

Resources

Avg Trucks/Da

Total Trucks in Design Lane over the Design Life

	23
ay in Design Lane over the Design Life	T. LE
	Children of Lines

(%)

(%)

	Single		Tandem	+-+	Tridem
AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS
26	0.07	44	1.16	62	0
24	1.6	36	7.76	56	0
22	2.6	40	38.79	50	0
20	6.63	32	54.76	44	0
18	16.61	28	44.43	38	0
16	23.88	24	30.74	32	0
14	47.76	20	45	26	0
12	116.76	16	59.25	20	0
10	142.7	12	91.15	14	0
8	233.6	8	47.01	8	0

TRAFFIC SUMMARY DETAILS

V

LOGOUT

100

2 PAVEMENT STRUCTURE

0

Home

New Design

O

My Designs

0

Resources

Ø

100

User Defined Traffic Info

Traffic Growth Rate

(% per year)

(%)

(%)

Directional Distribution

Design Lane Distribution

Help 🕜

(%) % of Slabs Cracked at End of Design Life (%)

CALCULATED TRAFFIC RESULTS

Avg Trucks/Day in Design Lane over the Design Life

Total Trucks in Design Lane over the Design Life

	+-+	Single		Tandem		Tridem
a second	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS
1-1	26	0.07	44	1.16	62	0
	24	1.6	36	7.76	56	0
	22	2.6	40	38.79	50	0
	20	6.63	32	54.76	44	0
	18	16.61	28	44.43	38	0
to	16	23.88	24	30.74	32	0
D. a	14	47.76	20	45	26	0
	12	116.76	16	59.25	20	0
	10	142.7	12	91.15	14	0

47.01

233.6

8

TRAFFIC SUMMARY DETAILS

V

LOGOUT

2 PAVEMENT STRUCTURE

GLOBAL

Reliability

(%)

(%)

Home

New Design

O

My Designs

0

Resources

9

Project Type: Street O Concrete TRAFFIC Collector Design Life 25

100

User Defined Traffic Info

Traffic Growth Rate

(% per year)

Directional Distribution

Design Lane Distribution

V

(Years)

(%)

(%)

and the second

V

% of Slabs Cracked at End of Design Life

Help

CALCULATED TRAFFIC RESULTS

Avg Trucks/Day in Design Lane over the Design Life

Total Trucks in Design Lane over the Design Life

TRAFFIC SUMMARY DETAILS

	LOAD (kips)	1000 TRUCKS	LOAD (kips)	1000 TRUCKS	LOAD (kips)	1000 TRUCK
1. Ferral	26	0.07	44	1.16	62	0
100	24	1.6	36	7.76	56	0
	22	2.6	40	38.79	50	0
	20	6.63	32	54.76	44	0
	18	16.61	28	44.43	38	0
	16	23.88	24	30.74	32	0
5.0	14	47.76	20	45	26	0
	12	116.76	16	59.25	20	0
	10	142.7	12	91.15	14	0
4	8	233.6	8	47.01	8	0

Change Design Type

Privacy Policy

Terms of Service

SAVE PAVEMENT STRUCTURE

LOGOUT

2 PAVEMENT STRUCTURE

GLOBAL

Reliability

(%)

(%)

0

Home

New Design

O

My Designs

0

Resources

9

Project Type: Street O Concrete TRAFFIC Collector Design Life 25

50

User Defined Traffic Info

100 Traffic Growth Rate

Trucks/Day

(% per year)

V

V

(Years)

(%)

(%)

Directional Distribution

Design Lane Distribution

V

% of Slabs Cracked at End of Design Life

Help 🕜

CALCULATED TRAFFIC RESULTS

Avg Trucks/Day in Design Lane over the Design Life

Total Trucks in Design Lane over the Design Life

	Singlo		Tandom	H	Tridem
AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS	AXLE LOAD (kips)	AXLES/ 1000 TRUCKS
26	0.07	44	1.16	62	0
24	1.6	36	7.76	56	0
22	2.6	40	38.79	50	0
20	6.63	32	54.76	44	0
18	16.61	28	44.43	38	0
16	23.88	24	30.74	32	0
14	47.76	20	45	26	0
12	116.76	16	59.25	20	0
10	142.7	12	91.15	14	0
	AXLE LOAD (kips) 26 24 22 20 18 16 14 12 10	Single AXLE LOAD (kips) AXLES/ 1000 TRUCKS 26 0.07 24 1.6 22 2.6 20 6.63 18 16.61 16 23.88 14 47.76 12 116.76 10 142.7	Single AXLE LOAD (kips) AXLES/ 1000 TRUCKS AXLE LOAD (kips) 26 0.07 44 26 0.07 44 24 1.6 36 22 2.6 40 20 6.63 32 18 16.61 28 16 23.88 24 14 47.76 20 12 116.76 16 10 142.7 12	AXLE LOAD (kips) AXLES/ 1000 TRUCKS AXLE LOAD (kips) AXLES/ 1000 (kips) Tandem 26 0.07 44 A.LES/ LOAD (kips) AXLE 1000 TRUCKS 26 0.07 44 1.16 24 1.6 36 7.76 22 2.6 40 38.79 20 6.63 32 54.76 18 16.61 28 44.43 16 23.88 24 30.74 14 47.76 20 45 12 116.76 16 59.25 10 142.7 12 91.15	AXLE LOAD (kips) AXLES/ 1000 TRUCKS AXLE LOAD (kips) AXLE 1000 TRUCKS AXLE LOAD (kips) AXLE 1000 TRUCKS 26 0.07 44 1.16 62 24 1.6 36 7.76 56 22 2.6 40 38.79 50 20 6.63 32 54.76 44 18 16.61 28 44.43 38 16 23.88 24 30.74 32 14 47.76 20 45 26 12 116.76 16 59.25 20 10 142.7 12 91.15 14

47.01

233.6

TRAFFIC SUMMARY DETAILS

? Support

Change Design Type

Privacy Policy

PAVEMENT STRUCTURE

5

V

Roller-Compacted Concrete (RCC)

Continuously Reinforced Concrete Pavement (CRCP)

SUMMARY

G Resources

My Designs

Privacy Policy

Terms of Service

Privacy Policy

A-2-7, sandy

A-4

A-5

A-6

Fine-Grained Soils

ML, OL

MH

CL

Support

Project Level

Clayey Gravelly Sand

Silt

Silt/Sand/Gravel Mixture

Poorly Graded Silt

Plastic Clay

DESIGN SUMMARY

5.000-8.000

6.000-12.000

5,000-8,000

6,000-12,000

4-8

5-15

4-8

5-15

A-2-7, sandy

A-4

A-5

A-6

Fine-Grained Soils

ML, OL

MH

CL

Support

Project Level

Clayey Gravelly Sand

Silt

Silt/Sand/Gravel Mixture

Poorly Graded Silt

Plastic Clay

DESIGN SUMMARY

5.000-8.000

6.000-12.000

5,000-8,000

6,000-12,000

4-8

5-15

4-8

5-15

Project Level

Privacy Policy

SAVE DESIGN SUMMARY

LOGOUT

9

Project Type: Street O Concrete O JPCP

nalysis and	Guidance		
	ODAOKINO	FROMON	

SION LOAD TRANSFER JOINT SPACING

DOWELED UNDOWELED

The key to excellent long-term performance of doweled joints is adequate load transfer over the life of the pavement. Load transfer devices generally are recommended for jointed plain concrete pavements that have an initial design thickness greater than about 8 inches (200 mm) because traffic levels that require such thicknesses for fatigue resistance also are of a level that might result in pumping and faulting of the joints if load transfer devices are not included in the joints. When the initial design thickness is less than 8 inches (200 mm), load transfer devices are recommended only if faulting is the predicted cause of failure.

Although other geometries (e.g., elliptical, plate, square, etc.) and materials (e.g., stainless or microcomposite steel, zinc alloy-sleeved, etc.) can be used to transfer load across transverse joints in jointed plain concrete pavements, round and smooth steel dowel bars are the most commonly used load transfer device. Typical size recommendations for round steel dowel bars placed at 12 in. (300 mm) on-center are:

Recommended Dowel Bar Size

Concrete Design Thickness, in.	Dowel Bar Size, in.
less than 8 in. and cracking is predicated cause of failure	Dowel not recommended
less than 8 in. and faulting is predicted cause of failure	1.00 in.
between 8 in. and 10 in.	1.25 in.
greater than 10 in.	1.50 in.

Required load transfer device size and spacing can, however, vary based on load transfer technology geometry and material (see manufacturer's recommendations), and some non-uniform spacings offer opportunities to optimize/minimize steel content at the joints while causing minimal impacts on pavement responses (see ACPA's DowelCAD 2.0). Other exceptions also exist, like the lack of a need for load transfer devices in bonded concrete overlays on asphalt or composite pavements. The National Concrete Consortium (NCC) also has developed, "Recommendations for Standardized Dowel Load Transfer Systems for Jointed Concrete Pavements," which are available through the National Concrete Pavement Technology (CP Tech) Center

A

Project Type: Street O Concrete O JPCP

	1		
		10	
	÷		ĸ.

0

PavementDesigner.org

Analysis and	Guidance				
SENSITIVITY	CRACKING	EROSION	JOINT SPACING		UNDOWEL

The key to excellent long-term performance of doweled joints is adequate load transfer over the life of the pavement. Load transfer devices generally are recommended for jointed plain concrete pavements that have an initial design thickness greater than about 8 inches (200 mm) because traffic levels that require such thicknesses for fatigue

SAVE DESIGN

Entor	unique design name
Inter	unique design name

i older Name	
Project Folder	`
CREATE NEW FOLDER	

in pumping and faulting of the joints if load transfer devices are not thickness is less than 8 inches (200 mm), load transfer devices are cause of failure.

te, square, etc.) and materials (e.g., stainless or microcomposite steel, er load across transverse joints in jointed plain concrete pavements, ost commonly used load transfer device. Typical size recommendations 00 mm) on-center are:

SAVE	s, in.	Dowel Bar Size, in.
	d cause of failure	Dowel not recommended
	d cause of failure	1.00 in.
between 8 i	in. and 10 in.	1.25 in.
greater t	han 10 in.	1.50 in.

Required load transfer device size and spacing can, however, vary based on load transfer technology geometry and material (see manufacturer's recommendations), and some non-uniform spacings offer opportunities to optimize/minimize steel content at the joints while causing minimal impacts on pavement responses (see ACPA's DowelCAD 2.0). Other exceptions also exist, like the lack of a need for load transfer devices in bonded concrete overlays on asphalt or composite pavements. The National Concrete Consortium (NCC) also has developed, "Recommendations for Standardized Dowel Load Transfer Systems for Jointed Concrete Pavements," which are available through the National Concrete Pavement Technology (CP Tech) Center

PROJECT LEVEL PAVEMENT STRUCTURE SUMMARY 2 Project Type: Street O Concrete O JPCP **Calculated Minimum Thickness** Analysis and Guidance Xequate load transfer over the life of the pavement. EDIT DESIGN DETAILS 5.83 5.83 h concrete pavements that have an initial design vels that require such thicknesses for fatigue **Recommended Design Thickness** DESIGN NAME OWNER/AGENCY ting of the joints if load transfer devices are not de S&R Example 1 ACPA h 8 inches (200 mm), load transfer devices are DESIGNERS NAME PROJECT DESCRIPTION materials (e.g., stainless or microcomposite steel, Eric Ferrebee 6.00 6.00 verse joints in jointed plain concrete pavements, ROUTE load transfer device. Typical size recommendations Maximum Joint Spacing Overland Parkway ZIP CODE (Project location) My Designs Dowel Bar Size, in. 11 11 Dowel not recommended 1.00 in. 1.25 in. DOWNLOAD AND VIEW REPORT 1.50 in. Required load transfer device size and spacing can, however, vary based on load transfer technology geometry and material (see manufacturer's recommendations), and some non-uniform spacings offer opportunities to optimize/minimize steel PavementDesigner.org content at the joints while causing minimal impacts on pavement responses (see ACPA's DowelCAD 2.0). Other exceptions also exist, like the lack of a need for load transfer devices in bonded concrete overlays on asphalt or composite pavements. The National Concrete Consortium (NCC) also has developed, "Recommendations for Standardized Dowel Load Transfer

Tech) Center

Systems for Jointed Concrete Pavements," which are available through the National Concrete Pavement Technology (CP

d.

	Concrete O	Street O	Project Type: S	-
Pavem Project Description	nimum Thicknes	lated Min	Calcul	å
Project Name: Designer's Name:	Undo		Doweled	N. N.
Project Description:	5.8	in	5.83	
Design Summary Recommended Des Calculated Minimur	Design Thickne	mended	Recom	
Pavement Struct	Undo		Doweled	
SUBBASE Calculated Composite K	6.0	in	6.00	
	Joint Spacing	aximum J	Ma	
Granular Base	Undo		Doweled	-
	1	ft	11	
CONCRETE 28-Day Flex Strength: Modulus of Elasticity:	Designer.	ment	Paver	
Project Level				
Spectrum Type:				-

Paveme	entDesig	ner.org

ct Description

Project Name:	S&R Example 1	Owner:	ACPA	Zip Code:
Designer's Name:	Eric Ferrebee	Route:	Overland Parkway	

Description:

ign Summary	Doweled	Undoweled		Doweled	Undoweled
commended Design Thickness:	6.00 in.	6.00 in.	Maximum Joint Spacing:	11 ft.	11 ft.
culated Minimum Thickness:	5.83 in.	5.83 in.			

psi

4

ment Structure

SUBBASE Calculated Composite K-Value of Su	ubstructure:	260 psi/in	
Layer Type		Resilient M	odulus
JO	INTED PLAIN CO	DNCRETE SURFA	CE
Granular Base	~)	25,000	F

Flex Strength: 550 psi us of Elasticity: 4000000 psi

TRAFFIC

USER DEFINED TRAFFIC

Design Life:

Trucks Per Day:

Collector

25 years

100

Edge Support: Macrofibers in Concrete: N

SUBGRADE

	SUBGRADE
es	Known MRSG Value:
lo	

GLOBAL

Avg Trucks/Day in Design Lane Over the Design Life: 56

% Slabs Cracked at End of Design Life:

Reliability:

5,000 psi

85 %

15 %

Terms of Service

1.00 in. 1.25 in. 1.50 in. d on load transfer technology geometry and material

s offer opportunities to optimize/minimize steel ses (see ACPA's DowelCAD 2.0). Other exceptions crete overlays on asphalt or composite pavements. nendations for Standardized Dowel Load Transfer the National Concrete Pavement Technology (CP

DESIGN SUMMARY REPORT FOR

JOINTED-PLAIN CONCRETE PAVEMENT (JPCP)

Layer Thickness

DATE CREATED:

Wed Jan 30 2019 01:17:06 GMT-0600 (Central Standard Time)

SUMMARY

uate load transfer over the life of the pavement. procrete pavements that have an initial design s that require such thicknesses for fatigue of the joints if load transfer devices are not inches (200 mm), load transfer devices are

iterials (e.g., stainless or microcomposite steel, se joints in jointed plain concrete pavements, d transfer device. Typical size recommendations

Dowel Bar Size, in.

Dowel not recommended

GENERATE REPORT

Privacy Policy	

DESIGN SUMMARY REPORT FOR

JOINTED-PLAIN CONCRETE PAVEMENT (JPCP)

DATE CREATED:

Thu Oct 04 2018 15:10:11 GMT-0500 (Central Daylight Time)

Project Description

Project Name:	ARDOT - I-30 Calcula	tedwier:	undefined	Zip Code:	undefined
Designer's Name:	undefined	Route:	undefined		
Project Description:	undefined				

Design Summary

2 congri cummuny	Doweled	Undoweled		Doweled	Undoweled
Recommended Design Thickness:	8.50 in.	8.50 in.	Maximum Joint Spacing:	15 ft.	15 ft.
Calculated Minimum Thickness:	8.43 in.	8.43 in.			

Pavement Structure

SUBBASE

CONCRETE				SUBGRADE	
28-Day Flex Strength:	630 psi	Edge Support:	Yes	R-Value:	20
Modulus of Elasticity:	3500000 psi	Macrofibers in Concrete:	No	Calculated MRSG Value	4,305 psi

Project Level

TRAFFIC		GLOBAL	
Spectrum Type:	Major Arterial	Reliability:	90 %
Design Life:	20 years	% Slabs Cracked at End of Design Life:	5%
USER DEFINED	TRAFFIC		
Trucks Per Day:	7,860	Avg Trucks/Day in Design Lane Over the D	esign Life: 2,596
Traffic Growth Rate %:	1 % per year	Total Trucks in Design Lane Over the Desi	gn Life: 18,964,076
Directional Distribution:	50 %		
Design Lane Distribution:	60 %		

Design Inputs

Design Life: 20 years

Design Type: JPCP

Pavement construction: June, 2020 Traffic opening: September, 2020

Existing construction:

Climate Data 34.747, -92.233 Sources (Lat/Lon)

Design Structur	e				Traffic	
Layer type	Material Type	Thickness (in)	Joint Design:			Heavy Trucks
PCC	JPCP Default	9.0	Joint spacing (ft)	15.0	Age (year)	(cumulative)
Flexible	Default asphalt concrete	1.0	Dowel diameter (in)	1.25	2020 (initial)	7,860
Cement_Base	Cement stabilized	6.0	Slab width (ft)	12.0	2030 (10 years)	9,775,300
Subgrade	A-7-6	10.0			2040 (20 years)	22,134,400
Subgrade	A-7-6	Semi-infinite				

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	sausnedr	
Terminal IRI (in/mile)	172.00	117.99	90.00	99.92	Pass	
Mean joint faulting (in)	0.12	0.07	90.00	99.90	Pass	
JPCP transverse cracking (percent slabs)	5.00	4.61	90.00	91.91	Pass	

Distress Charts

0.14	Faulting
0.13	0.12
· 81	
C D.DK	
20.08	
0.04	0.0
0.02	and the second se
٥	
	Revenue Age (Meter)

- Threshold Value @ Specified Reliability @ 50% Reliability

INTERMODAL DESIGN

Intermodal Design

What Designs are Available for Heavy Intermodal/Industrial Vehicles

- ACI 330.2R-17 Guide for the Design and Construction of Concrete Site Paving for Industrial and Trucking Facilities
 - Uses design tables (Mainly for Trucks)
 - Lists additional design software:
 - ACPA StreetPave
 - Pavement ME
 - TCPavements / Optipave
 - ACPA AirPave

Intermodal Design with PavementDesigner

- Design for a CAT 986 Loader
 - 130,000 lb
 - Wheel base = 12.5 ft
 - Axle width = 10 ft
 - Tire Pressure = 90 psi

Engine			Operating Specifications		
Engine Model	Cat [®] C15 A	CERTIM	Rated Payload - Quarry Face	10 tonnes	11 tons
Gross Power - ISO 14396	329 KW	441 hp	Rated Payload - Loose Material (Standard)	12.7 tonnes	14 tons
Net Power - SAE J1349	305 kW	409 hp	Rated Payload - Loose Material (High Lift)	11 tonnes	12,1 tons
Buckets			Operating Weight	43717 kg	96,379 lb
Bucket Capacities	5-10.3 m ²	6.5-13.5 yd ¹	N 8 122 122 1		

Privacy Policy

Terms of Service

Select Project Type

LOGOUT

New Design

0

INTERMODAL

Concrete Industrial and Intermodal facilities offer a Iong-lasting pavement solution for non-over the road traffic. This may include forklifts, loaders, and other vehicles that use pneumatic tires and hard-rubber/plastic tires only. Facilities that have truck or bus traffic should use the parking or street design modules.

METHODOLOGY: ACPA AirPave

IN PROPERTY AND INCOMENTATION OF

Privacy Policy

Terms of Service

LOGOUT

1 PROJECT LEVEL

2 PAVEMENT STRUCTURE

3 SUMMARY

Project Type: Intermodal

\sim	
Home	

Ø

	t i	
New	Design	

G Resources

Name	# of Wheels	Gross Weight (lbs)	Contact Pressure	(psi) Contact Area (in²)	
Forklift - Clarklift C500/Y800CH	2	190653	80	566	
Forklift - Clarklift C500/Y950 CH	2	217937	80	647	
Container Handler - Kalmar LM	1	204168	130	746	
Aerial Lift - Marathon Letoureau Model 2682	1	243032	80	1443	
Straddle Carrier - Marathon Letoureau SST 100	1	229200	95	1146	
Transtainer Crane - Paceco RT Transtainer	1	252960	124	969	
Generic - Straddle Carrier	1	60211	110	260	
Container Truck - Taylor TEC - 950L	2	223225	94	564	
Container Truck - Taylor TEC - 155H	2	72716	110	157	
Container Truck - Taylor TEC - 155L	2	71326	110	154	
Container Handler - Taylor TYTC - 1100S	2	285120	108	627	
Forklift - Valmet TD 1812	2	104084	80	309	
Container Handler - Valmet TD 4212	2	206484	80	613	
Wheel Loader - CAT 986H	4	130358	90	172	

SELECT INTERMODAL PROJECT VEHICLES

Change Design Type

Privacy Policy

Terms of Service

SAVE PAVE

PAVEMENT STRUCTURE

LOGOUT

and the second second

1 PROJECT LEVEL

Project Type: Intermodal

	1		N.	L.	
	1			i"	
		8	85		
- 1	1.0				

New Design

My Designs

G Resources

> **?** Support

Ø

Name	# of Wheels	Gross Weight (194	^{s)} Contact Pressure	(psi) Contact Area (in ²)
2682	1	243032	80	1443
Straddle Carrier - Marathon Letoureau SST 100	1	229200	95	1146
Transtainer Crane - Paceco RT Transtainer	1	252960	124	969
Generic - Straddle Carrier	1	60211	110	260
Container Truck - Taylor TEC - 950L	2	223225	94	564
Container Truck - Taylor TEC - 155H	2	72716	110	157
Container Truck - Taylor TEC - 155L	2	71326	110	154
Container Handler - Taylor TYTC - 1100S	2	285120	108	627
Forklift - Valmet TD 1812	2	104084	80	309
Container Handler - Valmet TD 4212	2	206484	80	613
Wheel Loader - CAT 986H	4	130358	90	172
Wheel Loader - CAT 993K	4	427789	200	254
conveyor tan x dual y	4	157080	102	385 🗹
Example	2	100000	100	500 📝
MO/KS Test Vehicle	4	130000	90	360

SELECT INTERMODAL PROJECT VEHICLES

Add Custom Vehicle

Vehicle Name: Wheel Loader - CAT 986H Vehicle Image

Change Design Type

Privacy Policy

Terms of Service

Ô

SAVE

Project Level

Privacy Policy

