

Laboratory and Field Evaluation of Asphalt Mixtures Containing RAP in Phoenix, Arizona

Ali Zalghout Staff Engineer, GMU Geotechnical Inc.

Arizona Pavement and Materials Conference November 21, 2019

Overview

With the High Temperatures in Phoenix, how pavements with RAP contents are going to perform in practice?

Is RAP going to affect the Mechanical Properties of RAP mixtures in terms of cracking? Permanent Deformation? Moisture Damage?

Presentation Outline

Introduction

- Plan of Work and Objective
- Materials and Field Sections Construction
- Mixture Level Testing and Analysis
- Field Evaluation and Cores Testing
- Conclusion

Introduction

RAP is a potential solution

Zaumanis, 2013

Energy Consumption with Increasing Binder (%)

RISN Resource Innovation and Solutions Network Introduction

CO2 Savings

Kaloush (2018)

RISN Resource Innovation and Solutions Network Introduction

Asphalt Aging

Thermal Degradation

- Chemical Degradation
- Photo-Oxidation (UV 300-400 nm provide the needed energy)
- Thermal Oxidation
- Hydrolytic Degradation
- Asphalt Aging is a complex phenomenon

Oxidation occurs, Asphalt stiffens and become more brittle

NAPA. 2017

→ PG 124+26

In Phoenix PG 70-10

Plan of Work

Materials and Sections Construction

Resource Innovation and Solutions Network **R SN Materials and Sections Construction**

Property	0% RAP (Control)	15% RAP	25% RAP
Total Binder Content (%)	5	5	5
Marshall Bulk Density (pcf)	148	148.7	149.2
Max. Theoretical Specific Gravity	2.478	2.481	2.486
Max. Theoretical Specific Density (pcf)	154.6	154.8	155.1
Stability	5010	5390	5210
Marshall Flow (in)	11	10	11
% Air Voids	4.3	3.9	3.8
% VMA	14.5	14.5	14.2
% Air Voids Filled	70.5	72.7	72.8
% Eff Asphalt Total Mix	4.39	4.52	4.41
Film Thickness (micro)	9	9	9
Dust/Bitumen Ratio	1.1	1	1.1

PG 70-10 PG 70-10 PG 64-16

75 Blows

Section 710.2.3, MAG Specifications, 2013

Hydrated Lime as Anti-stripping agent for base mixtures, and type II cement for surface TR mix.

Materials and Sections Construction

- The base layers were constructed on December 3, 2018.
- The surface layer TR was constructed on the following day.

0% RAP Section (780)	25% RAP Section (878)		WEEROADWAYIRD

RISN Resource Innovation and Solutions Network

Materials and Sections Construction

Mixture Testing

Flow Number: To determine the Rutting Potential of the RAP mixtures compared to that of the Control one.

Uniaxial Fatigue : To determine the Fatigue Cracking resistance of the three mixtures.

C* Fracture Test: To determine the crack propagation properties of the 3 mixtures.

Tensile Strength Ratio (TSR): To determine the Moisture Damage susceptibility of the 3 mixtures.

IDEAL CT: To determine the cracking properties of the 3 mixtures

Dynamic Modulus AASHTO TP 62_

City of Phoenix City of Phoenix

- 4 Temp. : 4.4, 21.1, 37.8 and 54.4°C.
- For 6 frequencies: 25, 10, 5, 1, 0.5 and 0.1 Hz.
- The dynamic modulus, $|E^{\ast}|$ & phase angle δ

Dynamic Modulus Results

Flow Number AASHTO TP 79

RISN Resource Innovation and Solutions Network Flow Number Results

$$\varepsilon_p(N) = a \cdot N^b + c(e^{d \cdot N} - 1)$$

Flow Number		
0%		
15%	S	
25%		

$$\text{CTI} = \frac{G_f}{|m_{75}|} \times \left(\frac{l_{75}}{D}\right) \tag{1}$$

where G_f = fracture energy (J/m²); $G_f = W_f/(t \times D)$, where W_f = work of fracture (J), area under the load-displacement curve as shown in Fig. 1(b); t = specimen thickness (m), and D = specimen diameter (m); l_{75} = displacement corresponding to P_{75} , where $P_{75} = 0.75 \times P_{100}$, where P_{100} = peak load; and $|m_{75}|$ = postpeak slope corresponding to the P_{75} and l_{75} curve location

$$m_{75}| = \frac{|P_{85} - P_{65}|}{|l_{85} - l_{65}|} \tag{2}$$

where $P_{85} = 0.85 \times P_{100}$; $P_{65} = 0.65 \times P_{100}$; l_{85} = displacement corresponding to P_{85} ; and l_{65} = displacement corresponding to P_{65} .

Displacement, mm

IDEAL CT

C* Fracture Test

C* Fracture Test Results

Uniaxial Fatigue AASHTO TP 107

- To assess the resistance fatigue damage.
- The test was performed at an intermediate temperature of 18° C
- run at four strain levels.
- The strain levels were estimated such that the material fails in less than 10,000 cycles, between 10,000 50,000 cycles, between 50,000 100,000 cycles and greater than 100,000 cycles.
- The fatigue test data was analyzed using simplified viscoelastic continuum damage theory (S-VECD) formulation as
- The first step in this approach is to establish the damage characteristic (*C* vs. *S*) curve.
- The C vs. S curve is a unique relationship to a given asphalt concrete mixture and it is independent of test conditions.

Uniaxial Fatigue Results

Tensile Strength Ratio AASHTO T 283

16 hours @ -16 °C ± 2 °C

24 hours @ 60 °C ± 2 °C

Tensile Strength Ratio Results

Surface Evaluation (Distress Survey)

Cores taken from 15% RAP Section

Cores taken from the Control Section

Cores taken from 25% RAP Section

- Air Voids: 8.14%
- Thickness: 3.24"
- TS: 1012 kPa
- Laboratory TS: 1540 kPa

- Air Voids: 7%
- Thickness: 4.04"
- TS: 1203 kPa
- Laboratory TS: 1672 kPa

- Air Voids: 8.33%
- Thickness: 2.82"
- TS: 797 kPa
- Laboratory TS: 1242 kPa

RISN Resource Innovation and Solutions Network

Conclusion

Property	Test	Support	Remarks
Stiffness	Dynamic Modulus (E*)	Yes	
Rutting Resistance	Flow Number	Yes	
Cracking	Initiation (IDEAL CT)	Yes	
			Could be arguable, yet the 25% RAP
	Propagation (C* Test)	Questionable	mix was comparable to the control
			one
	Fatigue (Uniaxial Fatigue)	Yes	
Moisture	Tensile Strength Ratio	Yes	

Final Recommendation: 15% RAP can be incorporated to the City mixtures while keeping the same grade (PG 70-10). 25% RAP can be incorporated while using a softer binder (PG 64-16)

RISN Resource Innovation and Solutions Network

Acknowledgments

ASU Dr. Kamil Kaloush Mr. William Campbell

<u>COP</u>

Brandie Barrett Chris Ewell Peter Rupal Robert Duvall Ryan Stevens Mark Glock Rick Evans Chris Manno Anthony Humphrey Kini Knudson Kyle Vance Dwayne Culpeper

Fisher Industries Greg Groneberg Trey Billingsley Austin Bolze

Josh Skinner of M. R. Tanner Construction

Thank you!

azalghou@asu.edu

Questions?

MANYON MINEY

INSISSING TRADE