

Carbin App: A crowdsourced approach for monitoring quality of roads and their environmental impact

Jacob Roxon

Meshkat Botshekan (MIT); Athikom Wanichkul (MIT); Franz-Josef Ulm (MIT); Shahd Nara (Harvard University); Bader Anini (Birzeit University); Malik Ziq (Birzeit University); Osama Fakhouri (Birzeit University); Tim Chirananthavat (University of Washinton); Fengdi Guo (MIT); Jeremy Gregory (MIT); Randolph Kirchain (MIT); Erfan Asaadi (UMass Dartmouth); Arghavan Louhghalam (UMass Dartmouth); Mazdak Tootkaboni (UMass Dartmouth); Joy Chamoun (American University of Beirut); Naseem Daher (American University of Beirut)

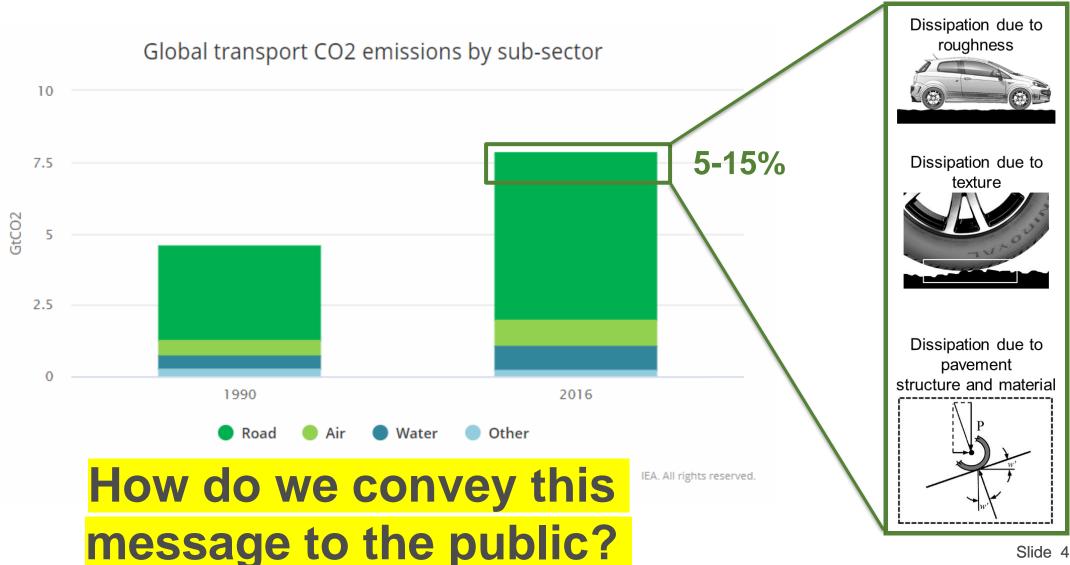
2019 Arizona Pavements/Materials Conference

- 1)Safety
- 2)Traffic
- 3)Comfort of driving
- 4) Fuel Consumption
- 5)Quality of Air

How do we convey this message to the public?

COSTING MOTORISTS

\$121
BILLION/YEAR


IN EXTRA VEHICLE REPAIRS AND OPERATING COSTS

21%
OF THE NATION'S
HIGHWAYS ARE IN
POOR CONDITION

2017 Infrastructure Report Card, ASCE

Quality of roads affects fuel economy and GHG emissions.

Additional Challenge: How do we monitor performance of roads while addressing CLIMATE CHANGE?

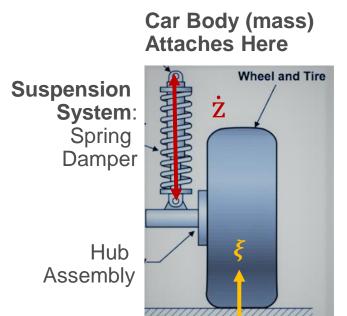
> 1,000,000,000 vehicles

> 50,000,000 miles of roads

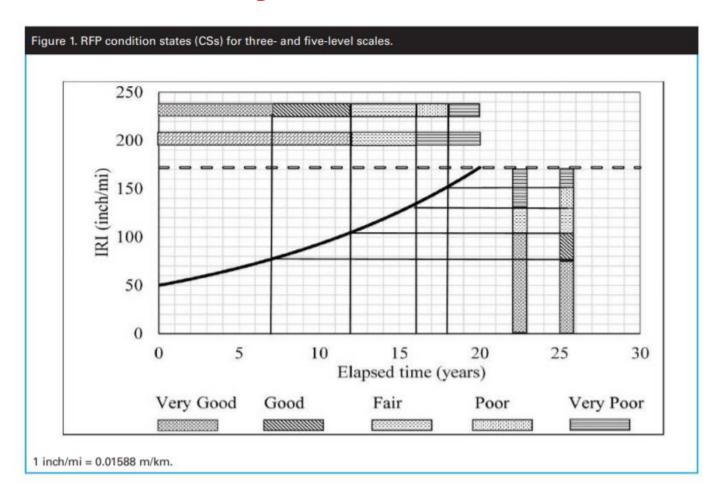
Current approaches only measure the current state of infrastructure (i.e. IRI) without ability to predict the future, not to mention GHG...

Laser/camera systems aren't scalable (\$100-300 per lane mile)

Crowdsourced apps not designed to be crowdsourced.

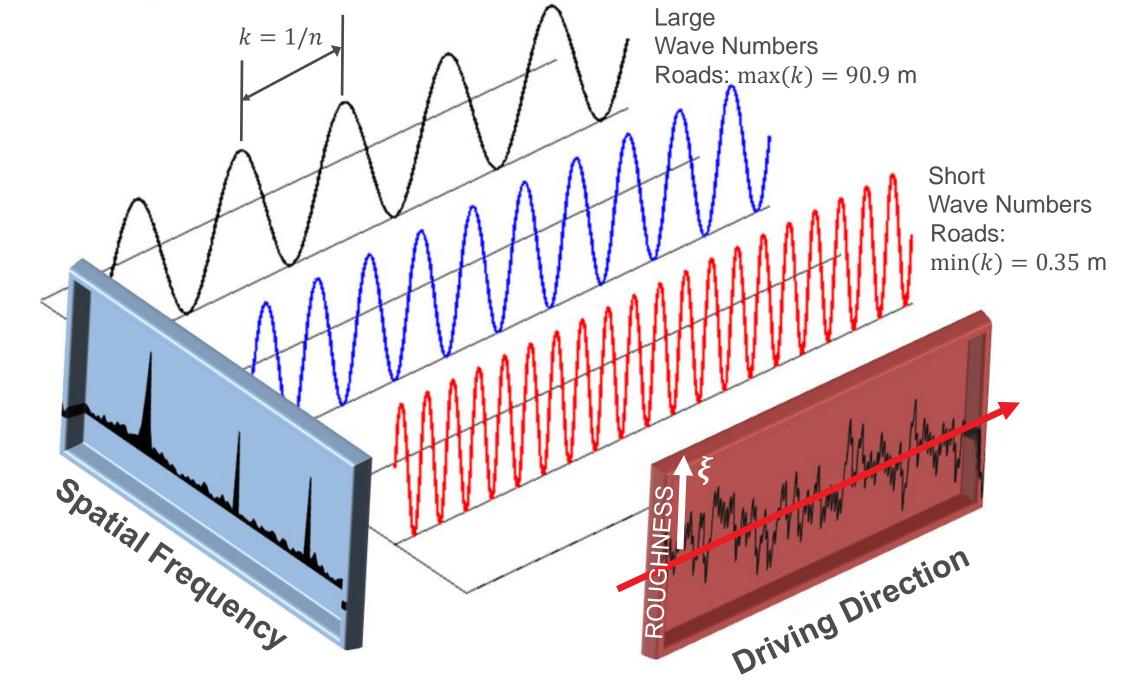


Aimed towards a technical user



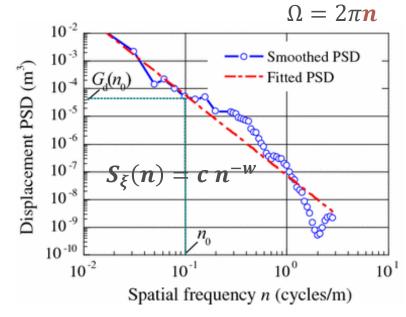
INTERNATIONAL ROUGHNESS INDEX

IRI ... Universal Ride Quality Measure


$$IRI = \frac{1}{LV_0} \int |\dot{z}|_{GC} dt$$

Longitudinal Roughness, ₹, causes vibrations.

Suspension Motion, $\dot{\mathbf{z}}$, is response of vehicle to roughness induced vibrations



IRI and Excess Fuel Consumption

- Measurement of Suspension Motion of a specific vehicle (Golden Car), at a fixed reference speed ($V_0 = 80 \text{ kmh}$), over a distance L:

$$\begin{split} \text{IRI} &= \frac{1}{LV_0} \int |\dot{z}|_{\text{GC}} \ dt = \frac{1}{V_0} \text{E}[|\dot{z}|_{\text{GC}}]_L \\ \\ \text{IRI} &= \kappa \sqrt{\int_0^\infty \Omega^2 \ |H_Z|_{\text{GC}}^2} \quad \textbf{S}_{\xi}(\Omega) \quad d\Omega \\ \text{KNOWN} \\ \text{REFERENCE} \\ \text{"GOLDEN CAR"} \\ \text{PROPERTIES} \quad \textbf{POWER SPECTRAL} \\ \text{DENSITY (PSD)} \end{split}$$

ISO 8608 : $\Omega \in [0.069 ... 17.77]$ (rad/m) Wavenumbers: k = 1/n = [0.35 - 90.9] m

EXCESS FUEL CONSUMPTION = ENERGY DISSIPATION IN SUSPENSION, TIRES...

$$\mathbf{E}[\delta\mathcal{E}] = \frac{1}{V} C_S \mathbf{E}[\dot{\mathbf{z}}^2] \times \mathbf{CAL} = 4\pi \frac{\zeta f_S}{V} m_S \mathbf{E}[\dot{\mathbf{z}}^2] \times \mathbf{CAL} \quad \text{CAL} = (1/34.2) \, \text{ltr/MJ (Gasoline)} \\ = (1/15) \, \text{kg CO2/MJ}$$

V... YOUR Speed

f_s ... YOUR Vehicle's Resonant Frequency

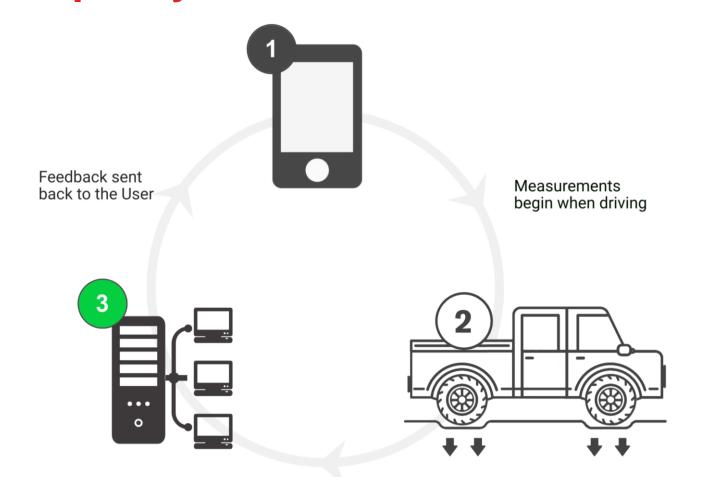
 ζ ... YOUR Suspension Damping

 m_s ... YOUR Vehicle mass

$$E[\dot{\mathbf{z}}^2] = V^2 \int_0^\infty \Omega^2 \quad |H_Z|^2_{\text{Your Car}} \quad \mathbf{S}_{\xi}(\Omega)_{\text{Measured PSD}} \ d\Omega$$

^{*} Sayers M.W., Karamihas S.M., (1998) The Little Book of Profiling, U. Mich. http://www.umtri.umich.edu/content/LittleBook98R.pdf

^{**} Loprencipe, G. & Zoccali, P. J. Mod. Transport. (2017) 25: 24. https://doi.org/10.1007/s40534-017-0122-1


^{***} A Louhghalam, M Tootkaboni, FJ Ulm (2015), JEM-ASCE, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000944

^{****} A Louhghalam, M Tootkaboni, T Igusa, FJ Ulm (2019), JAM-ASME, https://doi.org/10.1115/1.4041500

APPROACH TYPE	Smartphone Acceleration Measurement	Road Roughness PSD	Smartphone Acceleration PSD	Vehicle Properties	IRI / Road classifier	Environm. IMPACT	SAMPLE References
AD HOC ENGINEERING	X	NO	NO	NO (rigid vehicle)	YES (integration of acceleration)	NO	Originate from Pothole – Bump Approaches (many) Applied to IRI by e.g. Islam et al. (2014)
CORRELATION APPROACH e.g. RMS – IRI (ev. Speed) Fuzzy Logic)	X	NO	NO	NO	YES (CORRELATIONS NOT TRANSFERABLE)	NO	US 9108640 B2 Douangphachanh & Oneyama (2014) Hanson et al. (2014) Kumar et al. (2016) Sadjadi (2017) Zeng & Park (2018)
RANDOM VIBRATION THEORY	X	YES (50%) (but low-pass filter w=2); Speed- dependent pole.	YES	NO (considers GOLDEN CAR properties)	YES (50%) (determines rough- ness index, not IRI)	NO	Alessandroni et al. (2017) & TEAM http://www.smartroadsense.it/

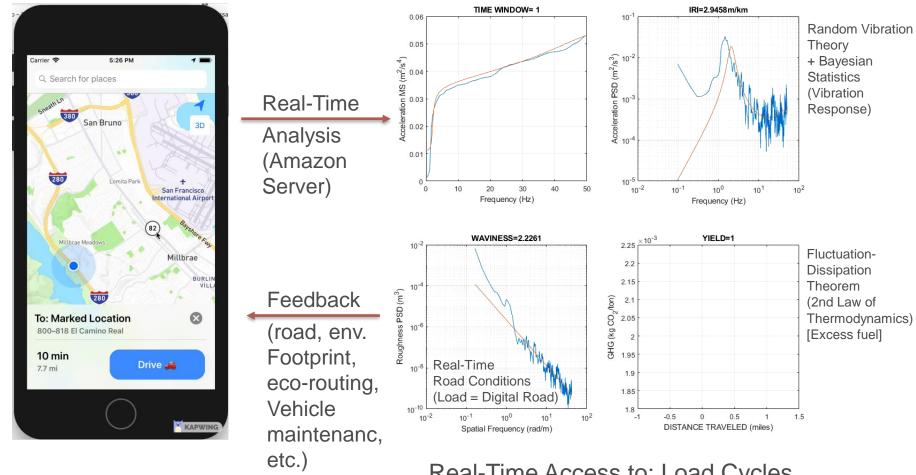
APPROACH TYPE	Smartphone Acceleration Measurement	Road Roughness PSD	Smartphone Acceleration PSD	Vehicle Properties	IRI / Road classifier	Environm. IMPACT	SAMPLE References	
CARBIN	X	YES (STOCHASTIC PROCESS)	YES (RANDOM VIBRATION THEORY)	YES (PROBABILISTIC INVERSE ANALYSIS)	YES (RANDOM VIBRATION THEORY)	YES (THERMO- DYNAMICS)	Patent FILED	
AD HOC ENGINEERING	X	NO	NO	NO (rigid vehicle)	YES (integration of acceleration)	NO	Originate from Pothole – Bump Approaches (many) Applied to IRI by e.g. Islam et al. (2014)	
CORRELATION APPROACH e.g. RMS – IRI (ev. Speed) Fuzzy Logic)	X	NO	NO	NO	YES (CORRELATIONS NOT TRANSFERABLE)	NO	US 9108640 B2 Douangphachanh & Oneyama (2014) Hanson et al. (2014) Kumar et al. (2016) Sadjadi (2017) Zeng & Park (2018)	
RANDOM VIBRATION THEORY	X	YES (50%) (but low-pass filter w=2); Speed- dependent pole.	YES	NO (considers GOLDEN CAR properties)	YES (50%) (determines rough- ness index, not IRI)	NO	Alessandroni et al. (2017) & TEAM http://www.smartroadsense.it/	

Carbin is VERY EASY TO USE and offers more than just road quality data.

Data is shared to web server

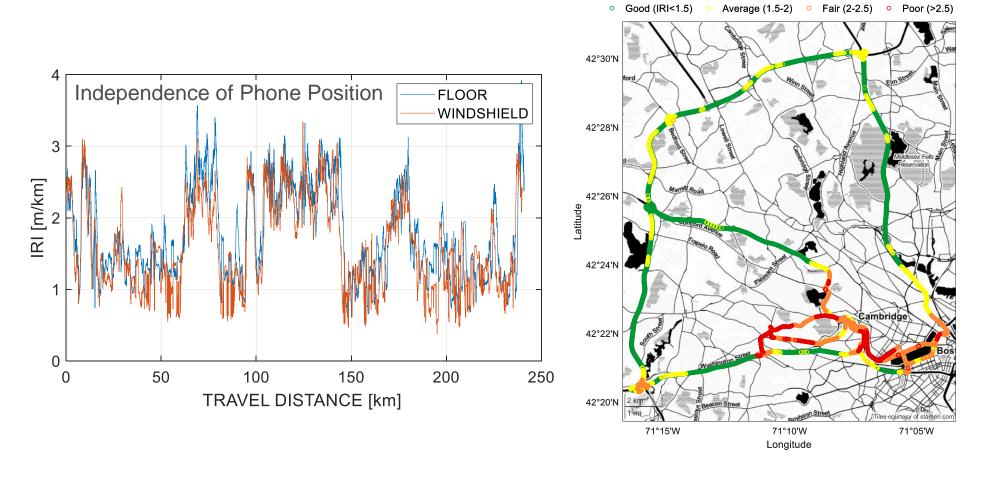
Record data: Mount the phone in a stable position and click start

2 inputs: X,Y,Z acceleration (100Hz) and GPS coordinates (1Hz) are sent to the server

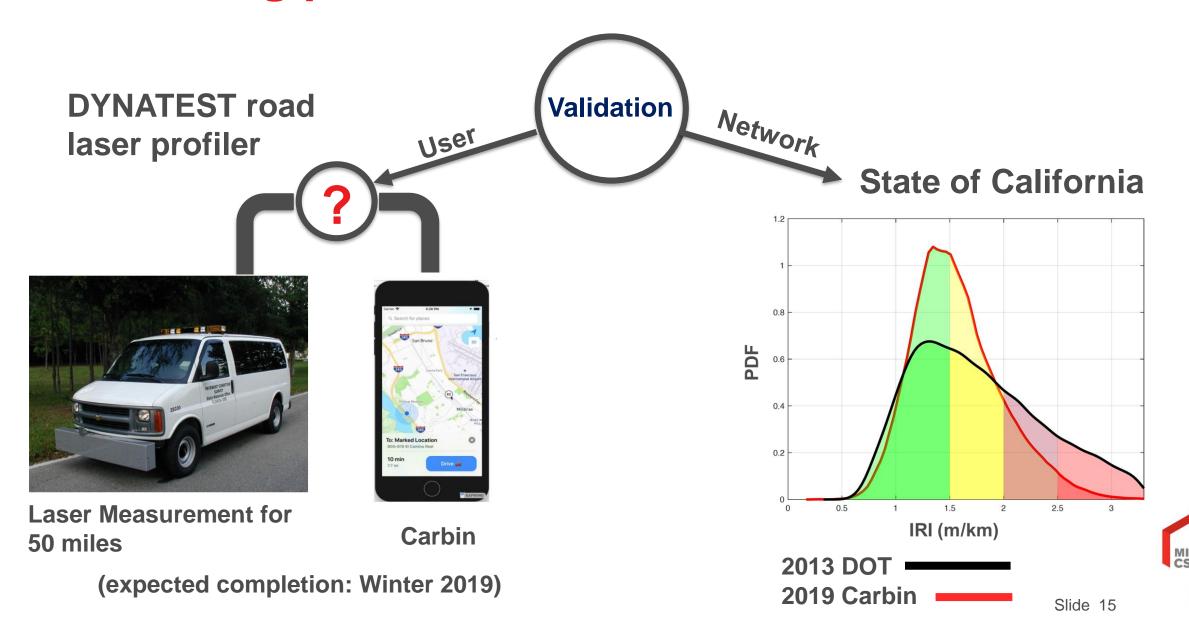

Results: Anonymous data gets analyzed in real time and shared with the user.

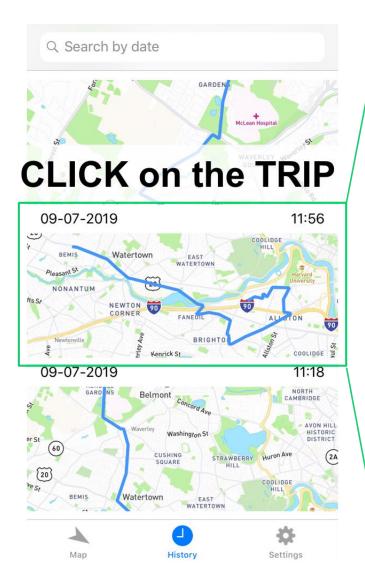
15Mb of data per hour / Wi-Fi compatibility

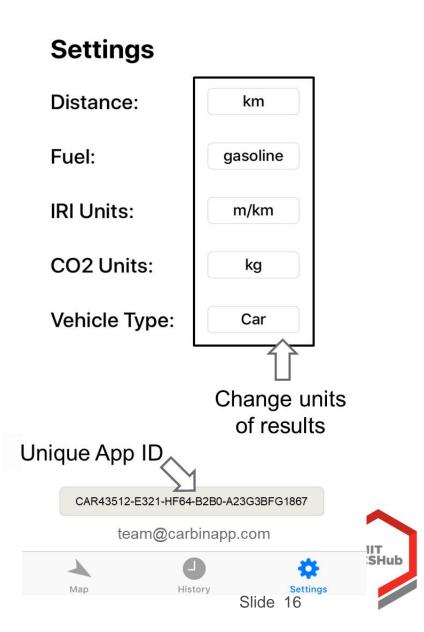
Analysis begins once the user starts driving


Crowdsourced Measurements: GPS, Accelerations (100Hz)

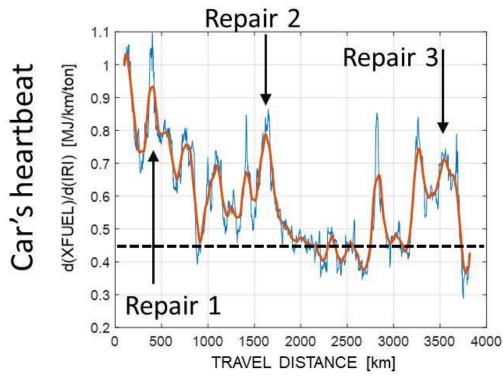
Phone can be placed anywhere* (IRI comparison)


*must be in a stable position




Validating phone obtained IRI results

Get immediate feedback upon completing the trip



With 500+ miles Carbin can identify issues with suspension

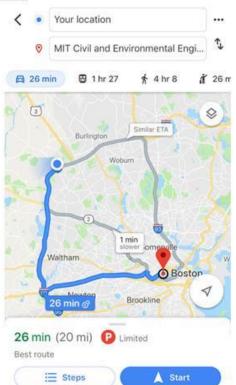
Heartbeat of the suspension system

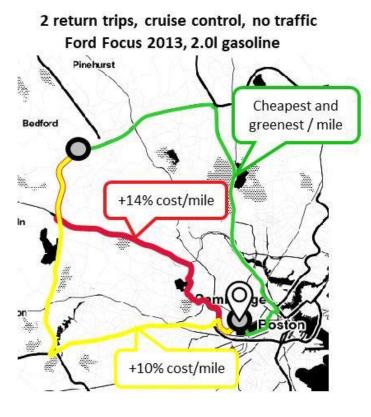
Repair 1: Wheel Alignment

Repair 2: Punctured tire repair

Repair 3: Front Axle Bearing

Replacement

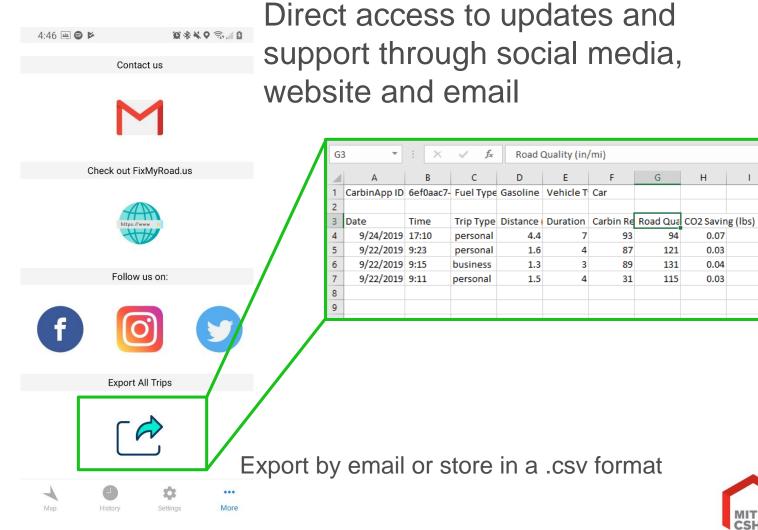

----- Baseline Performance



In the future Carbin will be able to offer eco-routes

Eco-routing

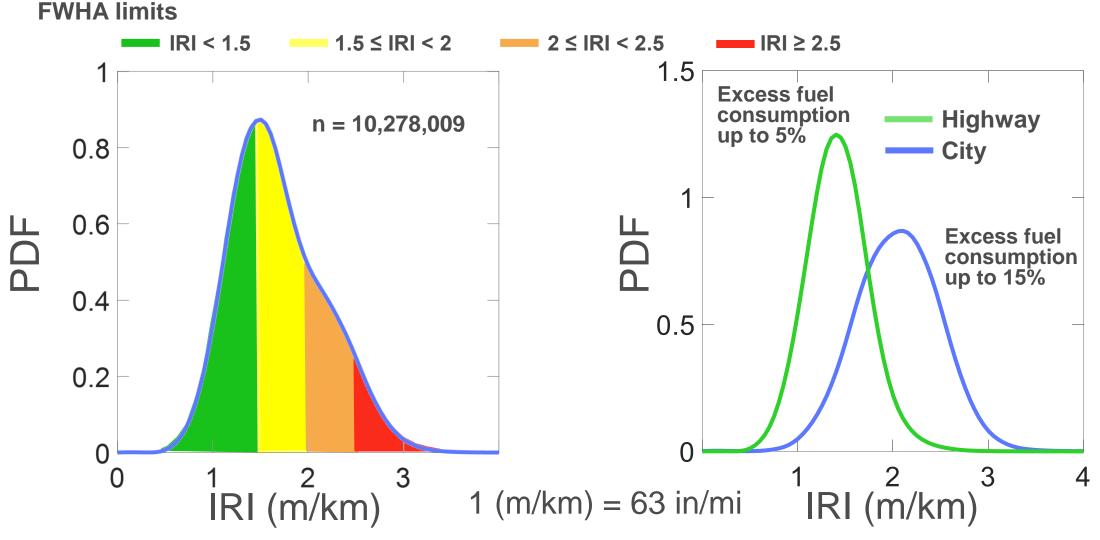
Avg. Results


Trip	1	2	3
IRI (m/km)	1.10	1.21	1.28
MPG	43	39.1	37.8
L/100km	5.47	6.02	6.22
Fuel Cost (\$/mile)	0.066	0.073	0.076
Fuel Cost (\$/km)	0.041	0.046	0.048
Fuel Cost & Emissions increase	0%	+10%	+14%

^{*} Fuel cost: \$2.85/gallon (\$0.75/L)

Other benefits of the app

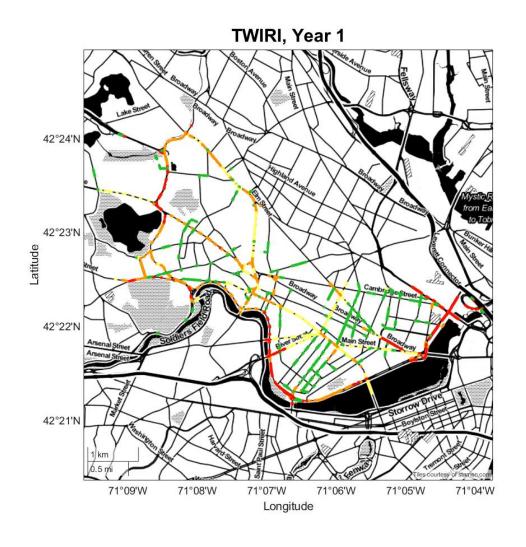
Universal metric, real-time impact

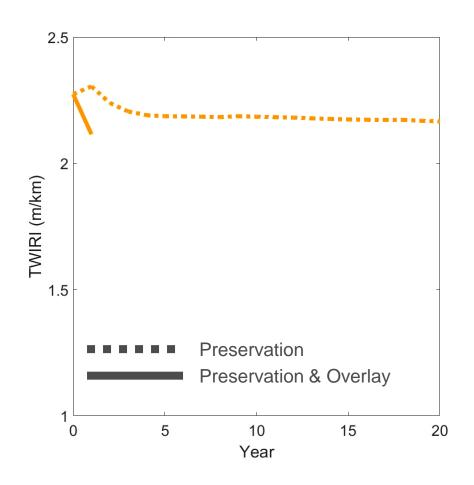

www.fixmyroad.us

March 2019 October 2019

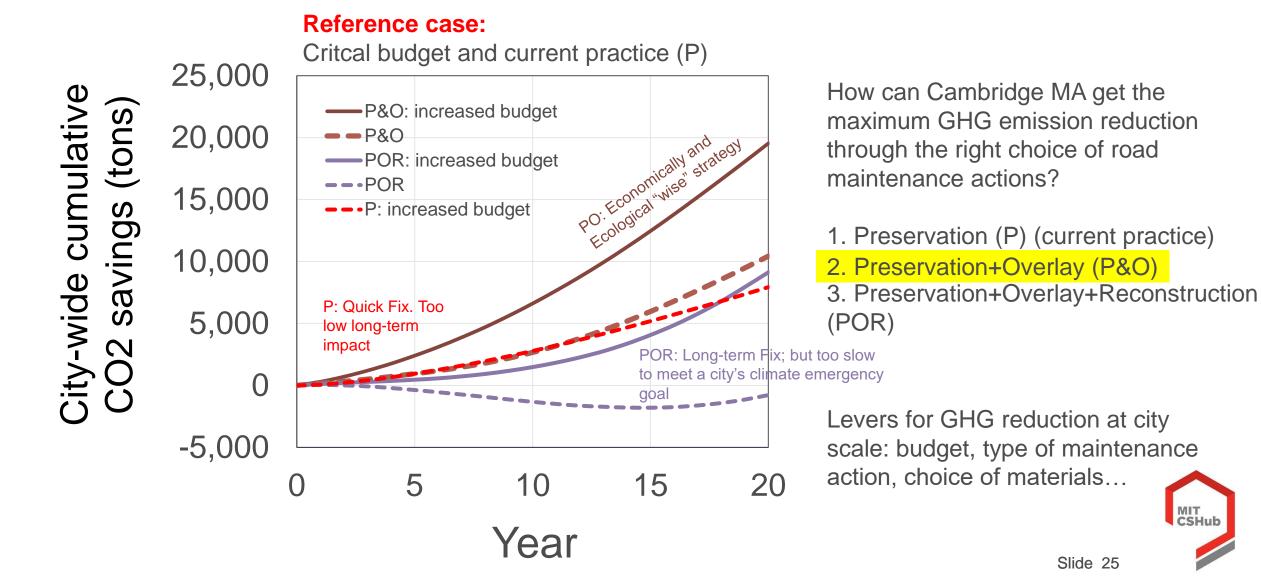
6-months & 350 active users (friends & family)

Increasing IRI database with hourly updates for all classes of roads


What can we do with this type of data?


Cambridge MA (example of a well-maintained dirt road system):

Maximizing road quality, while minimizing CO2 driving emissions with a <u>fixed budget</u>


Incorporating <u>long-term treatment actions</u> improves pavement network conditions and reduces GHG emissions

Sustainable asset management

NEXT STEPS

May 2020

Carbin APP:

- 1. Fidelity Program: "COLLECT MILES WITH CARBIN and GET REWARDS"
- 2. Push Notification: daily and weekly updates
- 3. Background Automatic Recording: no need to press start → just mount the phone
- 4. SDK model to be used as part of any app

Analysi

- 1. Predicting accurate AADT values for different vehicle classes
- 2. Temperature with pavement deflection modeling
- 3. Monitoring roads with identification of pavement types:

 Asphalt vs. Concrete → which one is "better" in the short / long run

Thank you

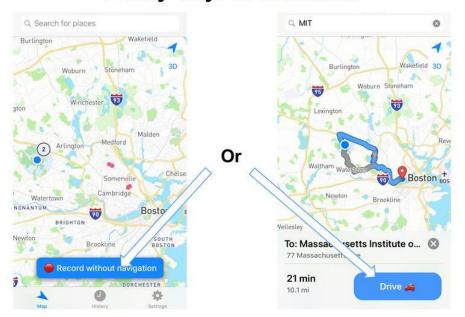
HELP US GET 1 million miles www.fixmyroad.us/takeaction

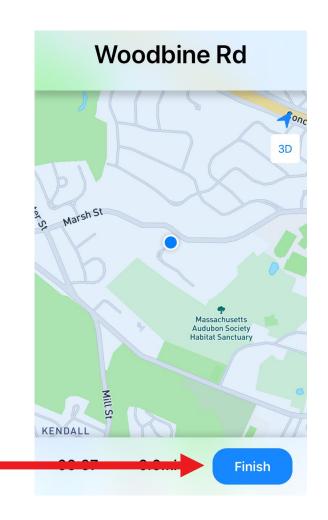
@CarbinApp

facebook.com/carbinapp

@carbinapp

EXTRA SLIDES

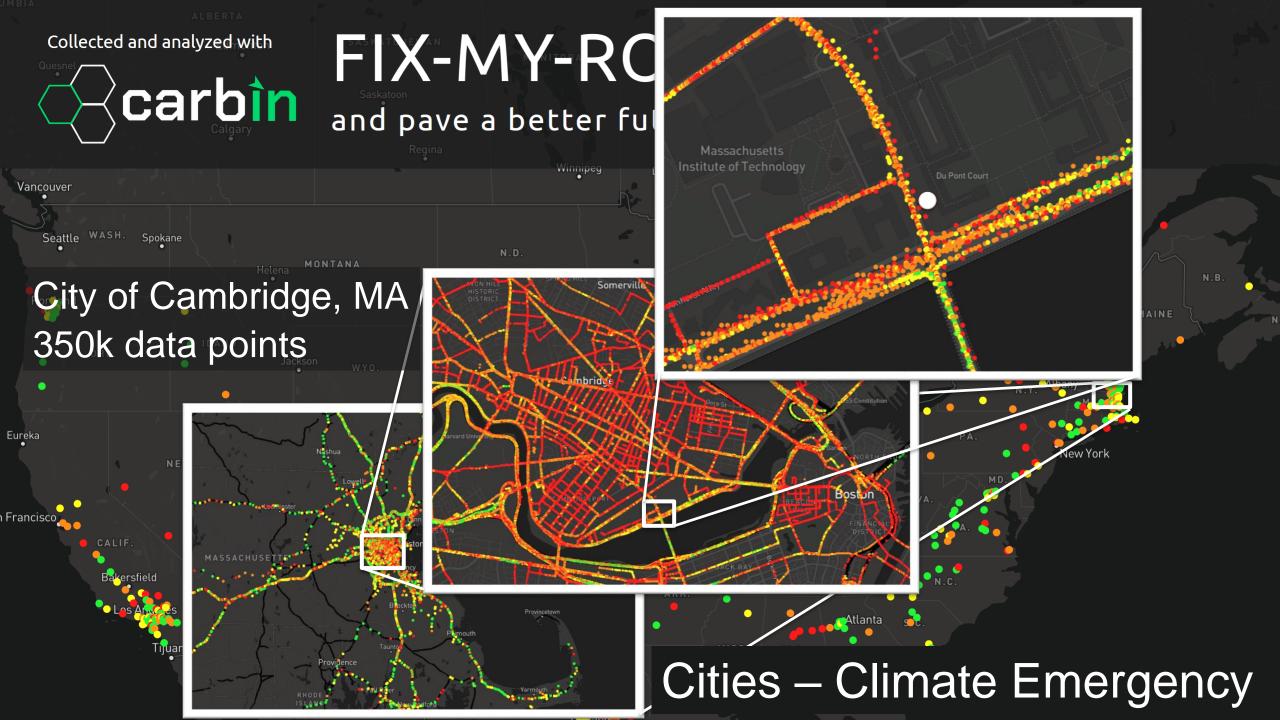



To participate get Carbin and start collecting data

ANDROID: Google play store → search for Carbin

iPhone: App Store → search for Carbin

2 easy ways to contribute

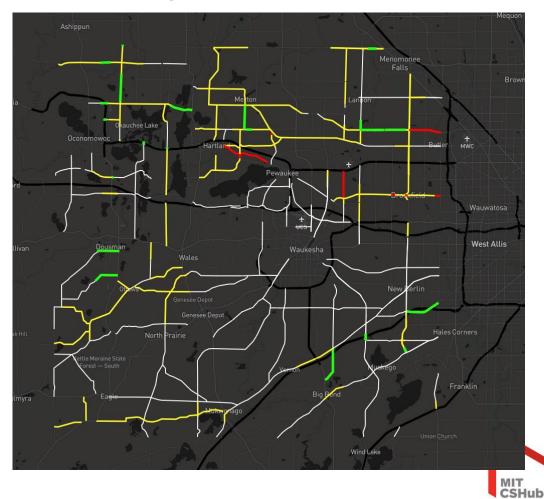


2 OUT 5 OF THE NATION'S INTERSTATES ARE CONGESTED

6.9 BILLION
HOURS DELAYED
IN TRAFFIC

42 HOURS
PER DRIVER

2017 Infrastructure Report Card, ASCE



Application of Carbin: PCI vs IRI + mapping

Waukesha County, WI

1	Branch ID	Section ID	From	То	Section	Surface Type	Section Length, ft	Predicted PCI
2	CTH FT	FT01A	85 ft. ecl Delafield Rd	PC 620 ft. W wel CTH J	S	AC	4,359	42
3	СТН К	K09A	85 fts. E CL CTH Y	PC at Brookfield City Lim	Р	AC	2,877	84
4	CTH K	K09D	384 ft. W CL Shasta Rd	331 ft. E CL Shasta Rd.	Р	AC	715	88
5	CTH K	K09E	331 ft. E CL Shasta Rd.	CL Marcy Rd.	Р	AC	1,243	88
6	CTH K	K11C	1286 ft E CL CTH YY	479 ft. W CL Lily Rd	Р	AC	3,044	57
7	CTH M	M03E	348 ft. E Brookfield Rd. R-A	892 ft. E CL Le Chateau Dr.	Р	AC	3,398	38
8	CTH M	M03H	358 ft. E CL Brook Springs Dr.	718 ft E CL Glen Cove Ln.	Р	AC	3,250	15
9	CTH VV	VV07AEB	466 ft. E CL CTH Y	728 ft. W CL Clover Ln	Р	AC	4, 195	81
10	CTH VV	VV07BEB	728 ft. W CL Clover Ln	600 ft. W CL Marcy Rd	Р	AC	2,713	80
11	CTH Y	Y09A	62 ft. N nol CTH K	213 ft. S scl CTH VV	Р	AC	4,297	3
12	CTH YY	YY01BNB	400 ft. scl CTH VV	CL Mill Rd.	P	AC	5,766	60
13	CTH YY	YY01BSB	400 ft. scl CTH VV	CL Mill Rd.	Р	AC	5,766	56
14	CTH K	K11FEB	72 ft. W CL 132nd St.	CL 124th St.	P	APC	2,873	70
15	CTH K	K11FWB	72 ft. W CL 132nd St.	CL 124th St.	Р	APC	2,873	69
16	CTH Y	Y07F	446 ft N CL Larkspur Dr	CL Gebhardt Rd.	Р	APC	3,254	46
17	CTH Y	Y08A	CL Gebhardt Rd.	443 ft. S CL Round About North Ave	Р	APC	1,896	41
18	CTH F	F02ANB	CL I-94	125 ft. S CL Westwood Dr.	Р	PCC	984	90
19	CTH F	F02ASB	CL I-94	125 ft. S CL Westwood Dr.	Р	PCC	984	90
20	CTH F	F04CNB	479 ft. N CL Mitchell Ln.	655 ft. S scl Main St.	P	PCC	3,729	65
21	CTH F	F04CSB	479 ft N CL Mitchell Ln.	655 ft. scl Main St.	Р	PCC	3,729	62
22	CTH F	F04HNB	CL CTH V South Portion	CL CTH V Noth Portion Round About	Р	PCC	2,709	75
23	CTH F	F04HSB	CL CTH V South Portion	CL CTH V North Portion Round About	Р	PCC	2,709	76
24	CTH M	M04HEB	187 ft. E CL Fair Heaven Blvd	wcl 124th Street	Р	PCC	1,056	27
25	CTH M	M04HWB	187 ft. E CL Fair Heaven Rd.	wcl 124th Street	Р	PCC	1,056	26

Carbin IRI map

