BENEFITS OF POLYMER MODIFIED ASPHALT (PMA)

PRESENTED BY: BOB KLUTTZ

Prepared for the Association of Modified Asphalt Producers Training Program

REASONS FOR PMA USE

Decline in asphalt pavement performance

To meet Superpave PG requirements

Competition with Portland Cement Concrete (PCC) requires the asphalt industry to build economical pavements that perform for a long

time-Perpetual Pavements

REASONS FOR PMA USE

Distresses in asphalt pavements and changes over the years

PMA in the hot mix plant and in the field

Field performance of PMA

EVOLUTION OF TRAFFIC

Interstate highways – 1956

AASHO Road Test – 1958-62

- still widely used for pavement design
- legal truck load 73,280 lbs.

Legal load limit increased to 80,000 lbs in 1982

- 10% load increase
- 40-50% greater stress to pavement

Radial truck tires have higher contact pressure

- Bias-ply truck tires 75 psi
- Radial truck tires 125 psi

DISTRESSES IN ASPHALT PAVEMENTS

High Temperature Permanent Deformation

Low Temperature Thermal Cracking

Load-Associated Fatigue Cracking

- Bottom-up cracking
- Top-down cracking

Aging

Stripping

PMA AFFECTS MIX PERFORMANCE

Pavement study using same mix, but different binders

PG 67-22 Unmodified Asphalt 15mm rutting

PG 63-22 Modified Asphalt No rutting

LOW TEMPERATURE THERMAL CRACKING

Thermal shrinkage cracking results from either a single thermal cycle where the temperature reaches a critical low temperature or from thermal cycling above the critical low temperature

Low temperature thermal cracking is predominantly influenced by the binder properties

Modifiers can improve the low temperature flexibility of the mixture

LOAD-ASSOCIATED FATIGUE CRACKING

Load-associated fatigue cracking is caused by continuous application of loads over a period of time

Load-associated fatigue cracking is influenced by binder and mixture properties and pavement thickness

Two types of fatigue cracking

- Bottom-up
- Top-down

HANDLING POLYMER MODIFIED ASPHALT (CONTRACTOR'S VIEW)

Prepared for the Association of Modified Asphalt Producers Training Program

OUTLINE

Handling of Asphalt Binder at the Terminal

Handling of Asphalt Binder at the Hot Mix Asphalt Plant

Recommended Plant Operations

Laydown of Modified Asphalt Mix

Contractor Liquid Asphalt QC Plan

HANDLING PMA AT THE PLANT

Vertical Tanks

- Vertical tanks provide more efficient agitation
- PMAs typically do not require agitation to prevent separation
- Agitation is recommended for GTR modified asphalt
- Check with your supplier

Check and Maintain Proper Temperatures

HANDLING PMA AT THE PLANT

Horizontal Tanks

- Horizontal tanks work fine for most PMAs
- Circulate to achieve uniform temperatures above and below heating coils

MIXING AND COMPACTION TEMPERATURE GUIDANCE

Superpave adopted AI procedure using rotational viscometer

Equiviscous laboratory mixing and compaction temperatures

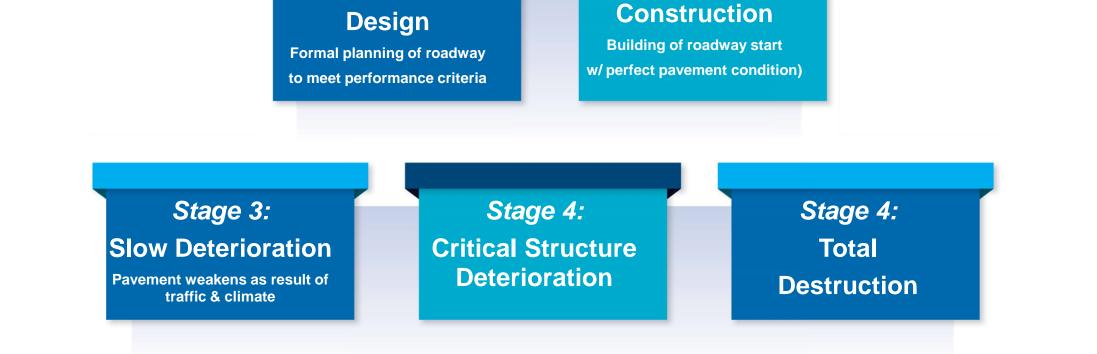
Does not work for PMA

- Yields extremely high temperatures
- Use suppliers' recommendations

Not For Field Temperatures for Unmodified or Modified Asphalts!!!

COMPACTING MODIFIED HMA

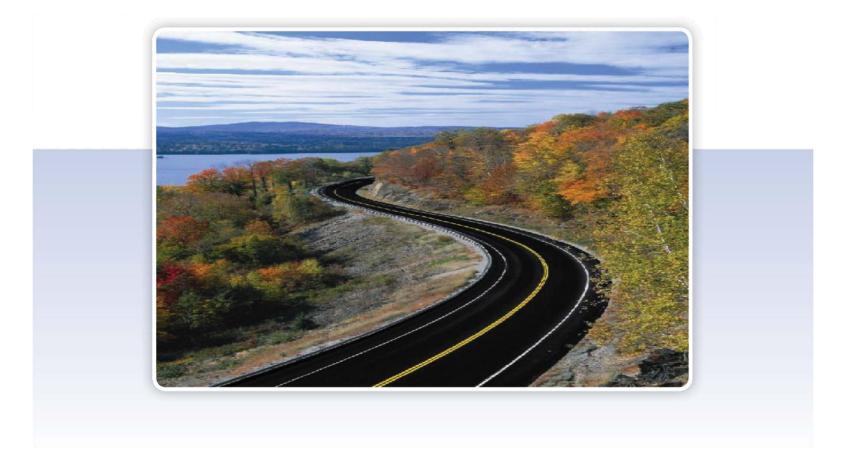
- Compaction requires confinement
- PMA may eliminate tender zone


PERFORMANCE OF POLYMER MODIFIED ASPHALT

Prepared for the Association of Modified Asphalt Producers Training Program

DESIGN LIFE STAGES OF US HIGHWAYS*

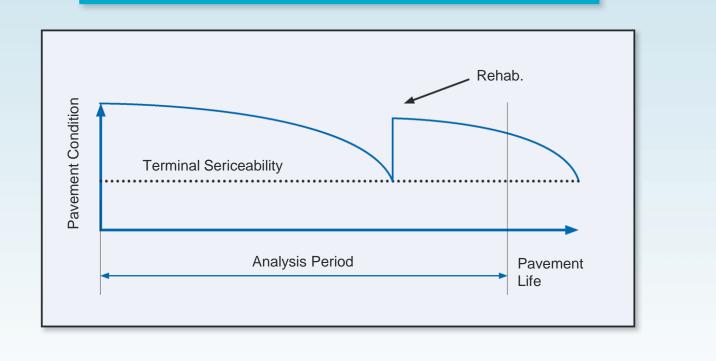
Stage 1:



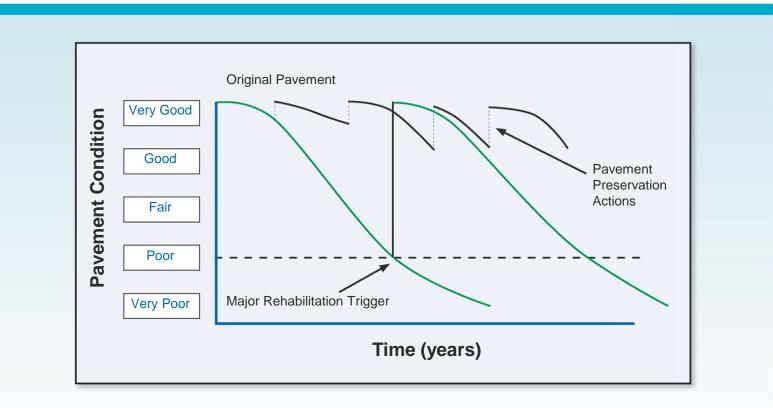
Stage 2:

*"At the Crossroads preserving our Highway Investment"

LIFE CYCLE COST ANALYSIS STUDIES



LIFE-CYCLE COST ANALYSIS


Analysis Period For A Pavement Design Alternative

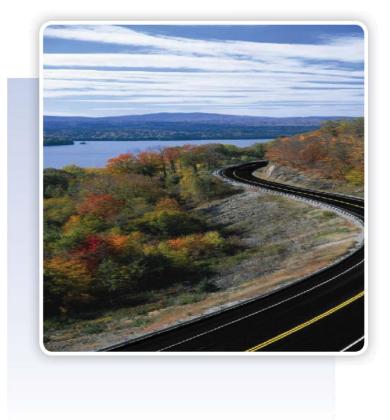
FHWA, "Life Cycle Cost Analysis in Pavement Design,"

PAVEMENT PRESERVATION CONCEPT*

*"At the Crossroads-Preserving Our Highway Investment"

LET'S FIRST LOOK AT PMA PAVEMENT PERFORMANCE

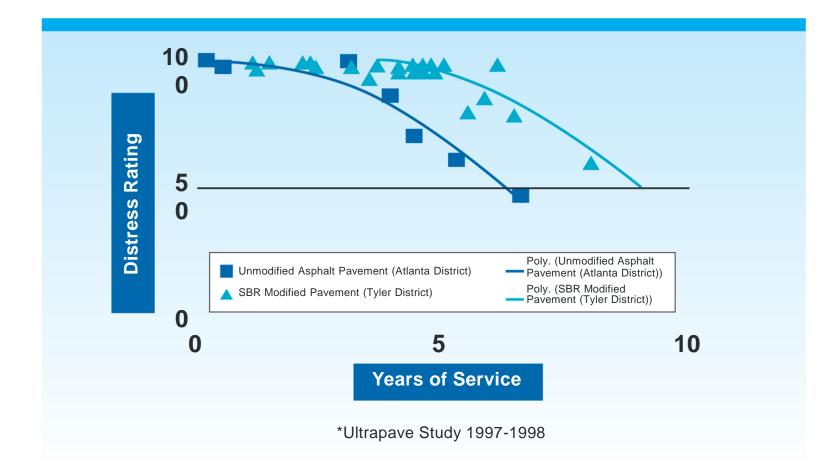
Polymers have been used in asphalt pavements for over 30 years


How have these pavements performed

Pavement studies

- Texas, Alabama and Utah
- Asphalt Institute/AMAP Study

TXDOT RATING SYSTEM


The Condition Score and Distress Score are based on 0-100 scale.

From our analysis the Distress and Condition Scores were found to be equal.

A score of 50 indicates the pavement requires some type of remedial attention

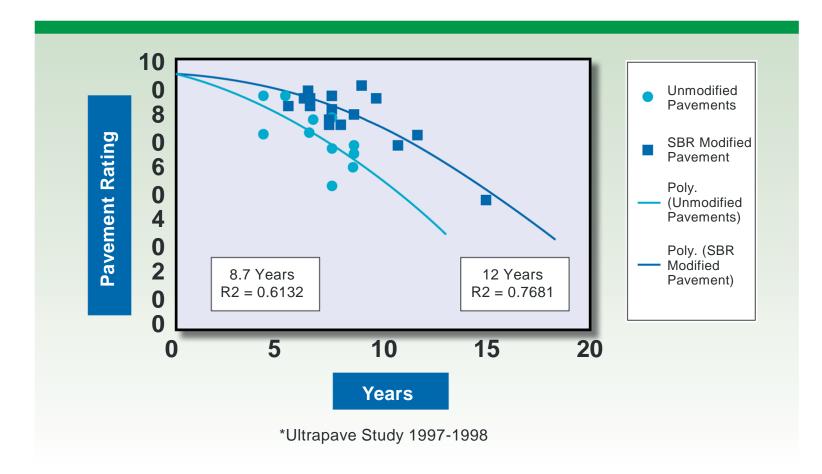
LIFE CYCLE COST ANALYSIS-TEXAS*

Distress and Ride data are collected on a biannual basis.

Information on cracking, rutting, patching, bleeding, etc. is gathered for the first 200 feet of each lane mile.

The data is put into a statistical model to produce a rating from 0 to 95.

AL DOT designs their pavements to last 28 years (12 years initially and then two 8 year overlays).


AL DOT RATING SYSTEM

AL DOT Rating System					
100	Perfect Pavement				
95	New Pavement				
76	Routine Maintenance Needed				
57	Resurfacing Needed				
38	Major Structural Work Needed				
0	Totally Unsuitable Pavement				

LCCA-ALABAMA*

UTAH DOT-POLYMER MODIFIED ASPHALT STUDY

UDOT has been using polymers since the late 1960s.

In the past, UDOT has used low-temp ductilities, Toughness and Tenacity and Pen-Vis to flatten out the temperature susceptibility curve.

Through field validation, determine the benefits of PMA.

Examined 33 projects using AC-10, AC-20 and AC-20R along I-70.

SUMMARY

"The AC-20R asphalt concrete pavement sections constructed in 1989 are performing with virtually no thermal cracking."*_____

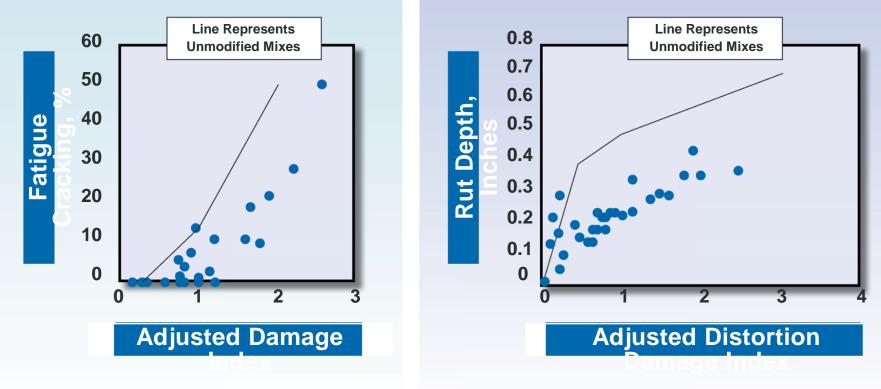
"Comparing the PMA to the conventional asphalt indicates a 76% reduction in incremental rating loss per year."*

"This justifies the use of polymerized asphalt for mitigating thermal cracking."*

*Cameron Peterson, Interstate 70-Polymerized Asphalt Pavement Evaluation, Utah Department of Transportation, Materials Division,1996.

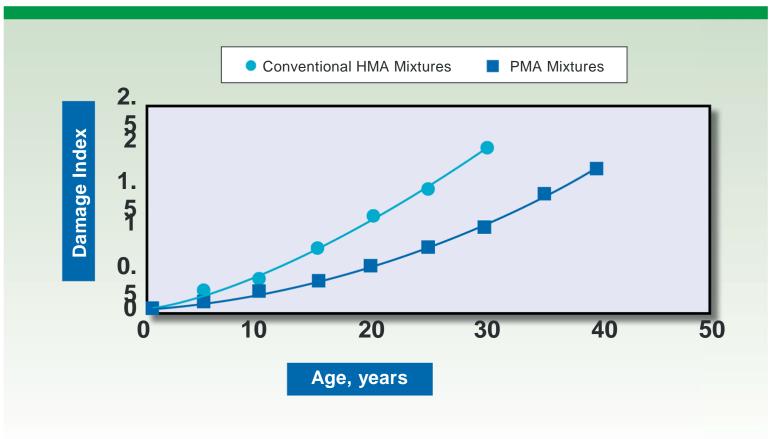
ASPHALT INSTITUTE STUDY

Titled "PMA for Enhancing HMA Performance"


Two Objectives:

- Quantify the effect of using PMA as compared to conventional mixtures in terms of increasing pavement life and reducing the occurrence of surface distress.
- Identify the conditions or site features (for example, traffic levels, layer thickness, climate, etc.) that maximize the effect of PMA on performance

MODIFIED VS. UNMODIFIED PERFORMANCE


Polymer Modified HMA shows a substantially lower Rut Depth

*Harold von Quintus, "Polymer-Modified Asphalts-Enhancing HMA Performance," AMAP Annual Meeting, February 10, 2004

EXPECTED SERVICE LIFE INCREASE FOR A 20-YEAR DESIGN*

*Harold von Quintus, "Polymer-Modified Asphalts-Enhancing HMA Performance," AMAP Annual Meeting, February 10, 2004

Site Factor	Condition Description	Years	
	Non-expansive soils; coarse- grained soils	5 – 10	Assumptions: PMA in
Foundation Soils	Expansive soils; moderately to highly plastic soils (PI>35)	2 – 5	surface and base layers. 20 year design.
	Frost susceptible soils in cold climates; moderaly to highly frost susceptible (Class 3 and 4)	2 - 5	

Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

Site Factor	Condition Description	Years	
	Deep	5 – 10	Assumptions: PMA in
Water Table Depth	Shallow; adequate drainage	2 – 8	surface and base layers. 20 year design.
	Shallow; inadequate drainage	0 - 2	

Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

Site Factor	Condition Description	Years	
	Hot	5 – 10	Assumptions: PMA in
Climate	Mild	2 – 5	surface and base layers. 20 year design.
	Cold	3 – 6	

Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

Site Factor	Condition	Years		
		Stop & go/intersections	5 – 10	
	Low volumes	Thoroughfares	3 – 6	
		Heavy loads/special containers	5 – 10	
Traffic	Moderate volur	5 – 10		
	High volumes	5 - 10		

Assumptions: PMA in surface and base layers. 20 year design.

*Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

Site Factor	Condition	Description	Years	
		Good Condition	5-10	
Existing	HMA	Good Condition; Extensive cracking (1)	1-3	
Pavement	PCC/JPCP	Good Condition	3-6	
Condition		Poor Condition; Faulting & mid-panel cracking (1)	0-2	C

Assumptions: PMA in surface and base layers. 20 year design.

(1) Without the use of any reflection cracking mitigation techniques

*Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

GENERIC TREATMENT TIMELINES FOR LCAA

Years	0	5	10	15	20	25	30	35	•
HMA Mix	Preservat at year 10 Mill & fill	· · T	Structural overlay at year 18	Т	Preservat app at ye 28: mill &	ar	Structura overlay at year 34	T T	Assumption: 20 year design.
PMA surface HMA base	Structural overlay, with PMA wearing surface at year 18					l overlay w surface at y			
PMA surface & base	Preservation application at year 18: mill & fill with PMA wearing surface			r 18:	mill & fill	••	ation at yea PMA overla e.		

*Harold von Quintus, "Quantification of the Effects of Polymer-Modified Asphalt for Reducing Pavement Distress," Asphalt Institute Engineering Report ER-215, February 10, 2005

ANY QUESTIONS? COMMENTS?