Arizona Pavements/Materials Conference Tempe, Arizona November 15, 2018

Geotechnical Challenges Related to the TBM for the Alaska Way Viaduct Replacement Project

Barry D. Siel, P.E. Senior Geotechnical Engineer Federal Highway Administration

The Tunnel

- Length: 9,270 feet (1.7 miles)
- Diameter: 56 feet (inside finished)
- Volume: 850,000 yd³
- Concrete Liner Rings: 1426

The TBM "Big Bertha"

- Length: 326 feet
- Diameter: 57.5 feet
- Weight: 7000 tons
- Cutterhead Teeth: 260
- Diameter of Boulder Bertha Can Swallow: 3 feet

Geotechnical Risk

- Earthquake Hazards
- In-Ground Geotechnical (Geologic Risks)
 - Design
 - Construction

Earthquake Risk

- Primarily a Design Consideration
- Considers Earthquakes from Multiple Fault Sources
 - Large coastal subduction quakes (~ M₀ 8.8)
 - Deep "Nisqually-type" earthquakes (~ M₀ 7.0)
 - Individual known faults (~ $M_0 6.8$)
 - Random crustal earthquakes (~ M₀ 6.5)
- Risk Level
 - 2,500-year return (no collapse)
 - Slightly greater than "Major Earthquake" design level in China

Earthquake Sources – Coast Subduction (~M 8.8)

Earthquake Sources – Nisqually (~M 7.0)

PNSN Rapid Instrumental Intensity Map Epicenter: 17.0 km NE of Olympia, WA Wed Feb 28, 2001 10:54:00 AM PST M 6.8 N47.15 W122.73 Depth: 51.9km ID:0102281854

PERCEIVED	Notielt	Weak	Light	Moderate	Strong	Very strong	Severe	Vio len1	Extreme
POTENTIAL DALLAGE	none	none	none	Very Ight	Light	Modera te	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC (Ng)	<.17	.17-1.4	1.4-3.9	3.9.9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL (cm/s)	<0.1	0.1.1.1	1.1-3.4	3.4-8.1	8.1-16	18-31	31-60	60-118	>116
INSTRUMENTAL	1	11-111	IV	v	VI	VII	VIII	IX	Xe

Earthquake Sources – Individual Faults (~M 6.8)

Random Earthquakes (~M 6.5)

In-Ground Geotechnical Risk

- Highly Variable Geologic Conditions
- Poor Soil Conditions in South End of Project
- High Groundwater Conditions

Geotechnical Setting

Glacially Sculpted and Overridden

- At least 6 glacial advances and retreats in last 2 M years
- Up to 3,000 feet of ice loading
- Over 3,000 feet of glacial and nonglacial soils north of Seattle Fault
- Typical sequence lacustrine clay, outwash, till, recessional

Glacially Eroded Troughs

- Duwamish filled with Mt. Rainier sediments
- Historically-filled tidal flats

Vashon Glacial Till

Vertical Joints

Wet Sand Layers

Glacial Outwash

Alaskan Way Viaduct & Seawall Replacement Program

Approximate nine-foot boulder erratic from glacial deposit (Qvd) (in background) on beach at southern end of Magnolia Bluff.

Boulders

Hard Laminated Glacio-lacustrine Clays

Fractured Glaciolacustrine Clay

Property of Museum of History & Industry, Seattle

Wood in Starbucks Excavation -

Denny/Mercer St. CSO Tunnel - 2002

Denny/Mercer St. CSO Tunnel - 2002

Abraded 2-inch thick by 12 inch wide cutterhead perimeter

Face Support in Slickensided Clay

Flowing Sand

Geotechnical Exploration

Geotechnical Exploration

- 123 mud rotary borings to depths of up to 300 feet
- 84 Sonic core borings with continuous sampling in tunnel horizon
- Hydraulic testing at 65 location; including longterm pumping tests
- Downhole geophysics at 20 locations
- Extensive pressure-meter testing
- Robust laboratory testing program

Ground Conditions

- Tunnel Alignment in Glacially Overridden Soils:
 - Mixed face
 - Hard clay and till
 - Dense silt, sand, and gravel
 - Perched groundwater & inflows
 - Flowing sands
 - Clogging sticky clays
 - Abrasive silt, sand, gravel, and till
 - Boulders

Geotechnical Contract Documents

- Geotechnical Data Report (GDR)
- Geotechnical Baseline Report (GBR)

South Portal Profile

Soil Unit Related Tunnel Construction Issues

- ESU-1 (Recent Granular) loose to dense, sand and gravel, wet, flowing, wood debris
- ESU-2 (Recent Clay & Silt) soft to stiff, squeezing, wood debris
- ESU-3 (Till) hard, abrasive, impermeable, cobbles and boulders
- ESU-4 (Sand & Gravel) dense, abrasive, high permeability, cobbles and boulders
- ESU-5 (Cohesionless Silt & Fine Sand) dense, abrasive, medium permeability, organics, cobbles and boulders
- ESU-6 (Cohesive Clay & Silt) hard, low permeability, fractured and sheared, sticky and clogging, organics, cobbles and boulders
- ESU-7 (Dirty Sand & Gravel) dense, abrasive, medium to low permeability, cobbles and boulders

Geotechnical Contract Documents

Geotechnical Baseline Report (GBR)

Table 10. Baseline Quantities of Boulders-Temporary Lateral Support Walls

Boulder Size	Number per 100,000 cubic yards of Excavation for temporary lateral support walls Baseline Value				
1 to 2 feet in size	400				
2 to 5 feet in size	40				
Greater than 5 feet in size	4				

Tunnel Profile - South

Tunnel Profile - South

Cross Section 201+50

Arizona Pavements/Materials Conference Tempe, Arizona – November 15, 2018

Questions?

Barry D. Siel, P.E. Senior Geotechnical Engineer Federal Highway Administration