State Experience with ME Pavement Design

(MEPDG Implementation at ADOT)

Scott Weinland, P.E. Pavement Design Section Arizona Department of Transportation March 22, 2017

MEPDG Implementation at ADOT Outline

- Where we've come from
- Where we're at now
- Where we're going...

Where we've come from New Pavement Design

- ADOT has used the AASHTO Design Guide for Pavements as it basis for designing new pavements since it was first issued as an "Interim" guide in 1961/2.
- Updates to the guide were made in 1972, 1981, 1986 and 1993.

Where we've come from New Pavement Design – AASHO Road Test

 The AASHTO Design Guide is based on the AASHO Road Test from the late 1950's

Where we've come from New Pavement Design – AASHO Road Test

- Consisted of six, two-lane loops constructed along the future alignment of Interstate 80 in Ottawa, Illinois.
- The pavement structure within each loop was varied.
- Each loop was loaded with a specific vehicle type and weight so that the interaction between vehicle loads and pavement structure could be investigated.
- The outcome of this road test was a general equation which relates the loss in pavement serviceability to the pavement structure and load applications.

Where we've come from New Pavement Design – AASHTO Design Guide

Design equation for Flexible pavements:

$$Log_{10}(W_{18}) = Z_{R} \times S_{O} + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_{R}) - 8.07$$

Where we've come from New Pavement Design – AASHTO Design Guide

SN = 3.90

SN = 3.88

Where we've come from New Pavement Design – AASHTO Design Guide

- The AASHTO Design Guide was used to design much of the original Interstate Highway System.
- Most of these pavements lasted the expected 20 years while carrying traffic volumes in excess of those predicted at the time of design.
- After nearly 6 decades since the completion of the AASHO Road Test, the design procedure continues to serve as the cornerstone for both PCC and HMA pavements.

Where we've come from New Pavement Design – 1993 Design Guide

 ADOT's "official" design methodology for new pavement is still the 1993 AASHTO Design Guide.

Where we've come from New Pavement Design

 Despite it's successful use over many decades, the procedure has many shortcomings.

Where we've come from 1993 Design Guide Shortcomings

- Only one soil type
- Only one climate
- AC thickness between one and six inches
- Limited traffic (1 Million Axle Load Cycles)
- Only one set of materials
- Can only predict ΔPSI
- Virtually every pavement design we conduct today using the 1993 AASHTO Guide is an EXTRAPOLATION!

Where we've come from Pavement Rehabilitation

- ADOT has used the Structural Overlay Design for Arizona (SODA) method for pavement rehabilitation since the early 80's
- The method was developed using regression analysis of 24 overlay projects constructed in the 1970's
- Overlay thickness is a function of ESAL's, pavement deflections, SVF, milling depth, and roughness
- Despite successful use for many years, it has many shortcomings

Where we've come from SODA Shortcomings

- Materials quality, construction methods, etc. have changed considerably since the 1970's
- The average overlay thickness for projects used to develop the method was approximately 2"
- Projects were overlayed only without any milling
- So, most pavement rehabilitation designs conducted using the SODA method is an EXTRAPOLATION!

Where we're at now Implementation of the MEPDG

- ADOT has been in the process of implementing the MEPDG since the late 90's.
- Allows for a more accurate prediction of pavement performance over time (better decisions relative to lifecycle cost and cash flow).
 - Utilizes both mechanistic and empirical principles.
 - Accounts for variations in materials and construction.
 - Utilizes more representative inputs for climate and vehicle loading.

Where we're at now

A Few Terms...

- Mechanistic relationship supported by laws of mechanics.
- Empirical relationship supported by experiment or observation.
- Mechanistic-Empirical Pavement Design Guide (MEPDG) - Pavement design methodology developed under NCHRP 1-37a.
- AASHTOWare <u>Pavement ME</u> Design Pavement design software used to analyze and design pavements based on M-E principles developed under NCHRP 1-37a.

AASHTOWare Pavement ME Overview

- State-of-the-practice tool for the design and analysis of new and rehabilitated pavements, based on mechanistic-empirical (ME) principles.
- Pavement ME calculates pavement response (stresses strains, and deflections) and used those responses to compute incremental damage over time.
- Predicts multiple performance indicators and provides a direct tie between materials, structural design, construction, climate, and traffic.

Pavement ME Process Flow Chart

- Define the traffic, climate and materials property inputs
- Select a trial design to analyze
- Analyze the pavement response
- Empirically relate pavement response to distress
- Adjust predicted distresses for the specified design reliability
- Compare predicted distress against design limits

Pavement ME Inputs

- Design method incorporates a hierarchical approach for specifying all design inputs.
- Approach is based on the philosophy that the level of engineering effort exerted in determining design inputs should be commensurate with the relative importance, size and cost of the project.
- Three levels are provided in the NCHRP 1-37A procedure.

Pavement ME Inputs (cont.)

- Level 1 Provides the highest accuracy and lowest uncertainty. Typically requires project specific field or laboratory evaluation (e.g. FWD, triaxial testing).
- Level 2 Provides an intermediate level of accuracy. Typically derived from a limited testing program or estimated via correlations, or agency specific database (e.g. M_r estimated from R-values, ADOT Materials Libraries).
- Level 3 Lowest level of accuracy. Derived from local or National default values (e.g. M_r based on soil class).

Menu		_													
Recent Files 🔹 📄 🖾 💾 🛄	🔛 🔏 👺	🎰 📥		2	1 🕜										
New Open SaveAs Save SaveAl	Close Exit Run	Batch Import Export	Undo	Red	o Help										
Explorer 🛛 🕹 🗸	H8672 - I-15 (5inMF	30%:Project H8672 -	I-15 (5in	MF 30.	:Traffic									٣	- X
			Vehi	cle Clas	ss Distribution	and Growth							Load D	efault Distributio	on
H86/2 - I-15 (5inMF 30%Crk V2,0)RC lest															
		FEOE	Vet	hicle Cla	BSS	Distrib	ition (%)		Growth Rate (%)		Growth Function				-
	Number of Japan	V 5505	Clas	ss 4		2.4			1		Compound			<u> </u>	
Tridem Axle Distribution	Percent trucks in desi	✓ 2	Clas	e 5		14.1			1		Compound	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ř	
Quad Axle Distribution	Percent trucks in desi	(√ 60		~		4.5								- 	-
Climate	Operational speed (m	r √ 75	Clas	Class 6					1		Compound			<u>. </u>	E
AC Layer Properties	▲ Traffic Capacity		Clas	s 7		0.7			1		Compound	-	-000		
🚍 🚋 Pavement Structure	Traffic Capacity Cap	✓ Not enforced	Clas	s 8		7.9			1		Compound		_	B	
Layer 1 Flexible : 34-in Marshall 416	Axle Configuration		Clas			66.3			1		Compound	-		<u>a</u>	-Ш
Layer 2 Flexible : 34-in Marshall 416(existing)	Average axle width (ft) 🗹 8.5				00.5			-		Compound		60	777	-
Layer 3 Non-stabilized Base : AB (Aggregate E	Dual tire spacing (in.)	✓ 12	Clas	s 10		1.4			1		Compound	•			_
Layer 4 Subgrade : A-2-4	Lire pressure (psi)	120	Clas	s 11		2.2			1		Compound				-
Balkaslaulation	Tandem axle spacing	51.6									ř			· ····	_
- Project Specific Calibration Factors	Ound axle spacing (43.2	Mont	thly Adj	ustment								Import	Monthly Adjustr	men
New Flexible	A Lateral Wander	4J.2		- 11-	Cl 4	Ch	0	0	7 (1 0	C	Cl 10	0	Cl 12	Cl 12	
Rehabilitation Flexible	Mean wheel location (i √ 15		nin	Class 4	Class o	Class	so clas	s / Class o	Class 9	Class TU	Class 11	Class 12	Class 15	-6
	Traffic wander standa	r √ 10	Janu	uary	0.99	0.87	0.85	1.11	0.9	0.86	1.03	0.69	0.62	1.23	
	Design lane width (ft)	✓ 12	Febr	ruary	1.04	0.97	0.9	0.87	0.94	0.92	0.95	0.78	0.85	0.96	
	▲ Wheelbase		Mar	ch	1.02	0.99	0.92	0.94	1.02	0.94	0.88	0.85	0.98	0.84	E
🔜 Unbonded Rigid	Average spacing of sh	12	A-4		0.07	0.01	0.04	1.12	0.02	0.02	0.01	0.01	1	0.01	-
🛍 Sensitivity	Average spacing of m	e 🗹 15	Apri	1	0.97	0.91	0.94	1.13	0.92	0.93	0.91	0.81	-	0.91	-11
Optimization	Average spacing of lo	r 🖌 18	May	/	0.96	0.95	0.91	0.78	0.92	0.93	0.83	0.97	0.91	0.79	
PDF Output Report	Percent trucks with sh		June	е	0.89	0.96	0.93	0.96	0.93	0.98	1	1.13	1.13	0.79	
Multiple Perioat Summary	Percent trucks with m	€ 🗹 1/	July		0.91	0.98	0.92	0.64	0.91	0.92	0.84	1 13	0.95	1	-
Batch Run	A Identifiere	ſ <u>♥</u> 12			0.05	0.00	1.01	0.00	0.00	1.00	0.05	1.05	1.0	0.74	-
	Display name/identifie	Default Traffic	Aug	ust	0.95	0.35	1.01	0.00	0.93	1.06	0.35	1.20	1.2	0.74	-
Options	Description of object	DarwinME Default Traff	Ayle	- Der T	ruck										
Automatic Updater Configuration Settings	Approver				TUCK	0.1			T 1		T 1				
ME Design Calibration Factors	Date approved	1/1/2011	Veh	nicle Cla	ISS	Single			landem		Indem		Quad		- ^
	Author	AASHTOWare	Clase	s 4		1.34			0.75		0		0		
Rehabilitation Flexible	Date created	1/1/2011	Class	s 5		2.14			0		0		0		
New Rigid	County		Clas	s 6		0.95			0.95		0		0		
Restore Rigid	State		0.00	-		0.00			0.00		0.00		0.07		= =
Bonaed Rigid	District Direction of travel		Class	s /		0.33			0.02		0.26		0.07		-11
	Erom station (miles)		Class	s 8		2.61			0.49		0		0		
	To station (miles)		T Class	s 9		1.2			1.84		0		0		
Traffic Capacity Cap			Clas	Class 10		0.98	0.98		1.01		0.86		0.06		
			Clas	s 11		4.78			0		0		0		-
			Class.	. 12		2.00			0.00		0.02		0.14		
	Error List														ąх

ΛΟΟΤ

- SPR-402: Development of Performance Related Specifications for Asphalt Pavements in the State of Arizona. (ASU, 1999-2006)
- Phase I Development of Work Plan.
- Phase II Characterization of Material (Binders, AC Mixtures, Unbound Materials).
- Phase III Local Calibration of MEPDG, and Development of Performance Related Specifications

- SPR-606: Calibration and Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide in Arizona. (ASU/ARA, 2007 - 2012)
- Calibrate and Validate the MEPDG, and accompanying software, for Arizona conditions.
- Develop an ADOT Users Guide for the MEPDG.
- Provide training in the use of the MEPDG

- SPR-672: Development of a Traffic Data Input System in Arizona for the MEPDG. (ARA, 2009 - 2010)
- Developed default recommendations or Level 2/3 statewide traffic inputs for Arizona.
- Developed and action plan for future work to obtain Level 1 traffic inputs.

 Since completing the local calibration in 2012, ADOT has been performing parallel designs on all major new construction and rehabilitation projects.

Design Example US93 MP 116.3 – 119.7 (1993 Design Guide)

- ESALS 10,998,000
- R-value 40
- ▶ SVF 1.5
- Mr 19,150 psi
- Reliability 99%

- ► SN_{req} 4.31
- 7" AC over 9" AB

Design Example US93 MP 116.3 – 119.7 (Pavement ME)

D			F	US 9)3 (Darwin	Carro nME\US 93 C	N arrow.dgpx				AASHTO	
Design In	puts											
Design Life: 20 years Base co Design Type: Flexible Pavement Pavemen Traffic c			Base cor Pavemer Traffic op	nstruction: nt constructio pening:	N n: J S	May, 2017 June, 2017 September	7 r, 2017	Climate Data 35.259, -113.9 Sources (Lat/Lon)			3.937	
Design Stru	icture								Tra	affic		
	Layer type Material Type			Thickness	(i n.):	Volumet	ruction:	Age (year)		Heavy Truc		
Layer 1 Flexible : 8	Flexible	34-in Mars	hall 416	9.0	Effective bi		binder %)	10.8	2017 (initial)		1 528	
Layer 2 Non-stabil	NonStabilized	AB (Aggre Base)	gate	11.0		Air voids	7.6	2017 (initial)		2 879 11		
Subgrade A-2-6 Semi-inf				Semi-infin	hite					7 (20 years)	6,748,38	
											-	
esign Ou	itputs											
Distress	Prediction Su	mmary										
Distress Type					Distress @ Specified Reliability			Reli	Reliability (%)		Criterion	
					Т	arget	get Predicted		t Achieved		Satisfied ?	
Terminal IRI (in./mile)						50.00	142.53	97.00)	98.48	Pass	
Permanent deformation - total pavement (in.)						0.50	0.53	97.00)	94.26	Fail	
AC bottom-up fatigue cracking (percent)						10.00	10.62	97.00)	96.17	Fail	
AC thermal cracking (ft/mile)						00.00	39.41	97.00)	100.00	Pass	
AC top-down fatigue cracking (ft/mile)						00.00	1520.30	97.00)	99.34	Pass	
Permanent deformation - AC only (in.)						0.50	0.44	97.00)	99.59	Pass	

Design Example US93 MP 116.3 – 119.7 (Pavement ME)

Report generated on: 5/25/2016 8:38 AM Created by: on: 6/3/2014 3:45 PM Approved by: on: 6/3/2014 3:45 PM

Page 1 of 19

Design Example US93 MP 116.3 – 119.7

- 1993 Design Guide indicates we need 7" AC over 9' AB (SN = 4.34)
- Pavement ME indicates we need 9" AC over 11" AB (SN = 5.50)

What do we do???

Design Example US93 MP 116.3 – 119.7

- In general, Pavement ME results for new flexible pavement have been more conservative than our 1993 Design Guide results.
- We have had a number of 1993 Design Guide projects that have not met their 20-year design life.
- We should be able to have significant confidence in our Pavement ME results due to the fact that we have performed a local calibration.
- Performed a verification on an adjacent project constructed in 2008.

Design Example Verification Project (US93)

- 2006 Pavement design, based on 93 AASHTO Design Guide, required 6" AC over 8" AB.
- Construction completed in 2008 (9-year old pavement).
- 2016 Photolog shows extensive alligator cracking including pumping of fines.

Design Example Verification of Adjacent Project (US93 MP 119.8)

Design Example Verification of Adjacent Project (US93 MP 120.9)

Pavement ME Pavement ME Design Example

- In general, we are making final design recommendations based on Pavement ME results, unless there is good evidence to do otherwise.
- As is the case with the 1993 AASHTO Design Guide, and SODA, the AASHTOWare Pavement ME has it's shortcomings.

Pavement ME Pavement ME Shortcomings

- Occasionally we get results that are counter to what experience tells us
- Composite (PCC + FC) pavement modeling questionable
- Significant investment to characterize materials, perform a local calibration and purchase the software
- Extensive training required
- Can easily become a "Black Box"
- Software changes on a regular basis

Where we're going

- Continue to run parallel designs
- Continue to participate in Pavement ME training opportunities as well as User Group Meetings
- Consider future re-calibration of some or all of the models
- Construction of additional WIM stations
- Long term plan is to fully adopt the use of Pavement ME

Pavement ME For Further Information

- SPR-606: Calibration and Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide in Arizona
- SPR-672: Development of a Traffic Data Input System in Arizona for the MEPDG
- Training Webinars at <u>http://me-</u> <u>design.com/MEDesign/Webinars.html</u>
- Scott Weinland (602) 712-8131

