Biogeotechnical Solutions for Mitigation of Fugitive Dust and Erosion Contol

Edward Kavazanjian, Jr., Ph.D., P.E.,D.GE, NAE Ira A. Fulton Professor of Civil Engineering School of Sustainable Engineering and the Built Environment Arizona State University

by

at

11th Arizona Pavements and Materials Conference 20 November 2014

What is Biogeotechnical Engineering?

Emerging sub-discipline in geotechnical engineering, including:

Bio-mediated processes: Managed and controlled through biological activity (living organisms)

<u>Bio-inspired processes:</u> Biological principles employed to develop new, abiotic solutions (no living organisms)

Example: Carbonate Precipitation

MICP: Microbially induced carbonate precipitation – A bio-mediated process

EICP: Enzyme induced carbonate precipitation – A bio-inspired process

Wind Erosion (Fugitive Dust)

Phoenix: Air-quality non-attainment zone

- Due to wind-blown soil (not vehicles or industry)
- Serious health problem
- Potential loss of highway funds (\$8 billion)
- \$5.3 Million in penalties issued in 2007
 - Plagues many other areas

Fugitive Dust Emission Sources

Industrial processes Fuel combustion & fires Agriculture Construction (residential)

- Construction (commercial)
- Construction (road)
- Other land clearing
- Travel on unpaved parking lots
- Offroad rec vehicles
- Leaf blowers fugitive dust
- Windblown vacant
- Windblown other
- Nonroad equipment
- Exhaust/tire wear/brake wear
- Paved roads (including trackout)
- Unpaved roads

Erosion Susceptibility

School of Sustainable Engineering for the Built Environment

Α

Traditional Dust Control

Water, salt solutions

School of Sustainable Engineering for the Built Environment

Biogeotechnical dust control

Advantages: – "One and done" (but for how long?) Disavantages

- Cost
- Environmental impact

School of Sustainable Engineering for the Built Environment

Biogeotechnical Options

Biopolymers

- Kavazanjian et al. (2009): Xanthan gum
- Chen et al. (2014): Xanthan gum, guar gum
- Carbonate precipitation via ureolysis
 - Bang et al. (2011): MICP and EICP
 - Hamdan (2014): EICP

ASU/NASA Planetary Wind Tunnel

School of Sustainable Engineering for the Built Environment

Soils Tested

Arizona silty sand – Well graded, $d_{50} \approx 0.2 \text{ mm}$, 30% < #200Ottawa F-60 sand – Poorly graded, $d_{50} \approx 0.15 \text{ mm}$, 0% < #200Mine tailings – Well graded, $d_{50} \approx 0.22 \text{ mm}$, 10% < #200

Biopolymers/Biofilms

Biopolymers:

- Polymer Biomolecules
- Covalently bonded monomers
- Polynucleotides, polypeptides, polysaccharides

Biofilms :

- Aggregate of microorganisms within a biopolymer matrix
- Adhered to each other and/or to a surface.

Biopolymers/Biofilms (2)

Biofilm growth:

A bio-mediated processes

Biopolymer spray or mix and compact:

Bio-inspired application

Candidate Biopolymers

Selection Criteria	Xantahn	Guar	Chitosn	PGA	PHB
Water soluble	X	Χ		X	N
Readily available	X	Х	X		1 1
Extensive literature on properties	Х	Х	Х	X	Х
Price per gram (compared to other biopolymers)	X	X	X		
Ease of application (no special equipment needed)	X	X	X		

Spray Application

School of Sustainable Engineering for the Built Environment

Biopolymer Erosion Control

ASU/NASA Planetary Wind Tunnel Testing

Xanthan Gum Treated Samples

ARIZONA STATE UNIVERSITY

Carbonate Precipitation

Several mechanisms

 Ureolysis (hydrolysis of urea) most studied

Enzyme urease catalyzes the reaction
Urea_(aq) speciates into CO₃⁻, 2NH₄⁺
CaCO₃ precipitates in the presence of Ca²⁺, alkaline pH

TU Delft MICP Tank Test (van Paassen et al.)

School of Sustainable Engineering for the Built Environment

EICP

Ureolysis w/ agricultural urease – Common in beans, melons, squash – Jack bean (*C. ensiformis*) most studied

School of Sustainable Engineering for the Built Environment

EICP Columns (ASU)

100-mm dia. lab columns

275-mm diameter, 19 liter bucket test w/ 50-mm diameter perforated pipe

EICP or Dust control

Two-part mixture

- Part 1: Urea and CaCl₂ in solution
- Part 2: Urease in solution
- Applied simultaneously (by spraying)

Forms a cemented crust

School of Sustainable Engineering for the Built Environment

EICP Treated Samples

School of Sustainable Engineering for the Built Environment

Surface Water Erosion Resistance

Control, no CaCO₃

CaCO₃ crust

Collected water runoff Control (left), CaCO₃ (right)

Enhanced Erosion Resitance

Mix and compact cementation with soil

- Resistance to surface water
- Stabilize low volume roads

Other Biogeotechnical Applications Soil and groundwater remediation Soil improvement Liquefaction mitigation Surface and subsurface barriers Sequestration of contaminants Alternative to Portland cement **Corosion control**

Issues to Consider

Cost Permanence/reversability Reversability may be beneficial in some applications Energy consumption **Environmental impacts Unanticipated side effects**

Conclusion

Fugitive dust contol: One of many potential biogeotechnical applications Many more waiting to be discovered

School of Sustainable Engineering for the Built Environment

Thank You for your attention

Any Questions ????

School of Sustainable Engineering for the Built Environment

