

Determination of In-Situ Density of Planned Roadway Cuts in Cemented and Coarse-Grained Soils Using Seismic Geophysical Methods to Estimate Earthwork Factors

By Daniel Fréchette, PhD, PE

AMEC Environment & Infrastructure, Inc.

Michael Rucker, PE

AMEC Environment & Infrstructure, Inc.

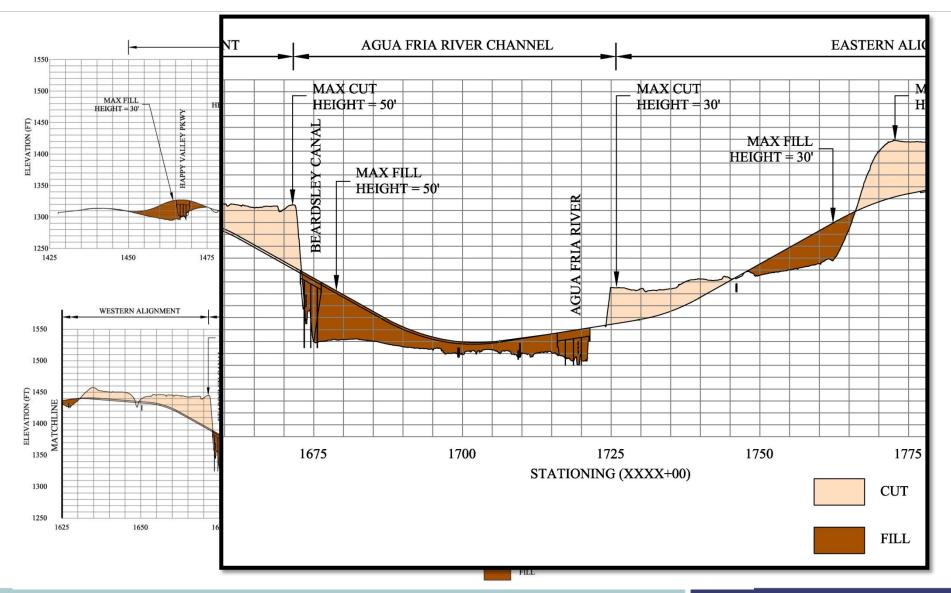
OUTLINE

- Introduction
- Geologic Setting and Geotechnical Profile
- Determination of Earthwork Factors
- Subsurface Investigation
- Determination of In-Situ Density
- Comparison of Various Methods to Measure

In-Situ Density

- Determination of Density of Compacted Embankment
- Conclusion

INTRODUCTION

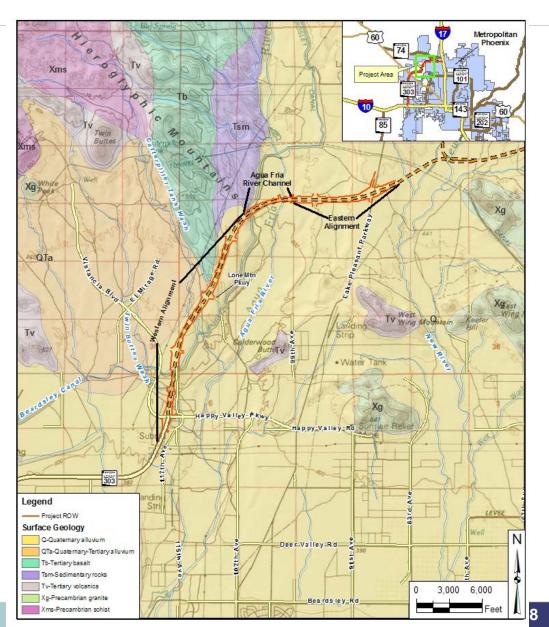

- ADOT and MAG design and construct the State Route 303 Loop
- Connects I-10 and I-17 in NW Phoenix
- Happy Valley Pkwy to Lake Pleasant Pkwy
- Seven Miles Long
- Native Undeveloped Desert
- Maximum Cut 50 Feet
- Maximum Fill Embankment 50 Feet
- 4.3 Million Cubic Yards of Excavation
- 2.6 Million Cubic Yards of Embankment

ROADWAY PROFILE

EXISTING GROUND – Western Alignment

EXISTING GROUND – Eastern Alignment

GEOLOGIC SETTING - REGIONAL



Regional Setting

- Basin and Range
- Hieroglyphic Mtns.
- Quarternary Alluvium

Local Setting

- Western Alignment
- Agua Fria River Channel
- Eastern Alignment

GEOTECHNICAL PROFILE

- Stratum A SC and SM with fines content > 30%
- Stratum B Sand and Gravel with silt and clay
 - Fines content < 12%</p>
- Stratum C Sand and Gravel in fine-grained matrix with cementation. Weak rock at depth similar to conglomerate.

Depth of Soil Strata for Local Geologic Units				
	Depth of Soil Strata (feet)			
Stratum	Western Alignment	Agua Fria River Channel	Eastern Alignment	
А	0 – 3 to 10	0 – 25 (when present)	0 – 3 to 8 feet	
В	> 3 to 10	< 85 to 100	> 3 to 8 feet	
С		> 85 to 100		

GEOTECHNICAL PROFILE – Stratum A

- Clayey Sand and Silty Sand with Fines Content > 30%
- Variable Mod. to Strong Cementation

GEOTECHNICAL PROFILE – Stratum B

Sand and Gravel with Silt and Clay

- Fines content < 12%</p>
- Considerable Cobbles
- Occasional Boulders

GEOTECHNICAL PROFILE – Stratum C

- Sand and Gravel in Fine-Grained Matrix with Varying Degree of Cementation
- Weak rock (Conglomerate) at depth

DETERMINATION OF EARTHWORK FACTORS

- What Information Do We Need?
- How Do We Calculate Earthwork Factors?
 - % Shrink =[1- γ_{ex}/γ_{emb}] x 100
- where:
- γ_{ex} = In-Situ Dry Density of Material to be Excavated
- γ_{emb} = Dry Density of Compacted Embankment Material

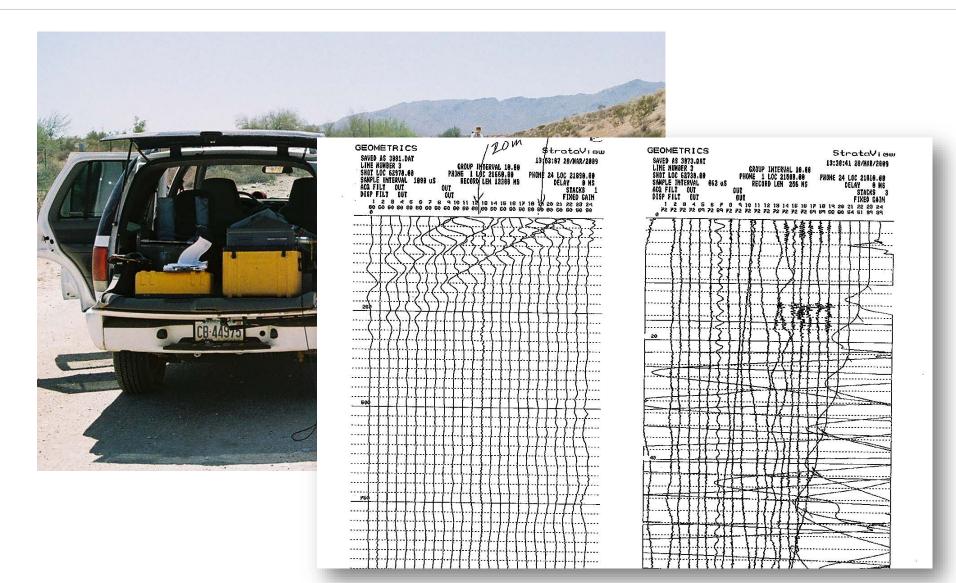
DETERMINATION OF EARTHWORK FACTORS

- What Information Do We Need?
- How Do We Calculate Earthwork Factors?
 - % Shrink =[1-γ_{ex}/γ_{emb}] x 100
- where:
- γ_{ex} = In-Situ Dry Density of Material to be Excavated
- γ_{emb} = Dry Density of Compacted Embankment Material

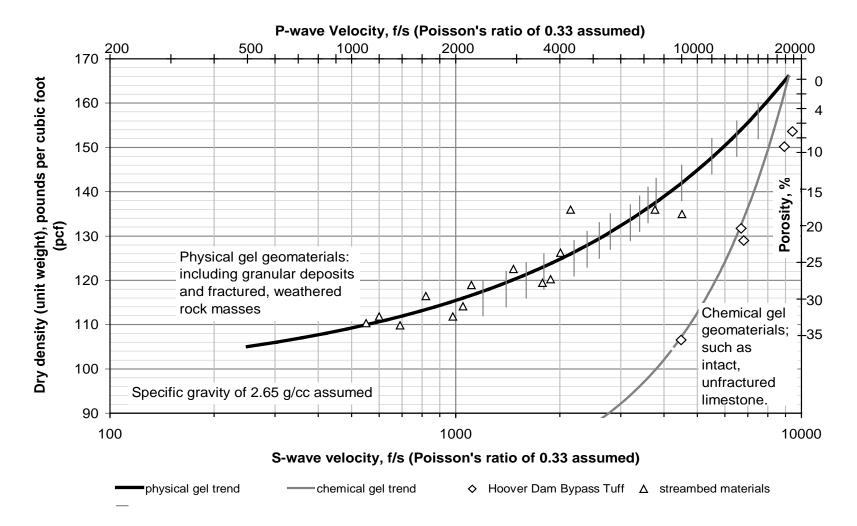
SUBSURFACE INVESTIGATION

- How Do We Sample the Site Soils?
- Typical Subsurface Investigation
 - Drilling with Auger Rig
 - Drilling with Tubex (Hammer) Rig
 - Conventional Test Pits
- Supplemental Investigative Methods
 - Drilling Soil Cores
 - Large Test Pits
 - Surface Seismic Investigations

SUBSURFACE INVESTIGATION – Soil Cores


SUBSURFACE INVESTIGATION – Large Test Pits

SUBSURFACE INVESTIGATION – Surface Seismic Investigations



SUBSURFACE INVESTIGATION – Surface Seismic Investigations

Relationship between Seismic Velocity and Dry Density

DETERMINATION OF IN-SITU DENSITY

Soil Cores

- Laboratory Density of Intact Cores
 - -Fine-Grained Cohesive
 - -Cemented
- Large Test Pits
 - In-Situ Density of Soils
 - -Sand Cone Method
 - -Nuclear Method
- Surface Seismic Investigations
 - Measure Velocity of Compression (p-wave) and Shear Waves (s-wave)
 - Correlate Velocities with Unit Weight

COMPARISON OF SAND CONE, NUCLEAR AND SEISMIC GEOPHYSICAL METHODS

In-Situ Dry Density Versus Depth for Various Test Procedures

			Dry Density (pcf ²)		
Depth	USCS Soil Classification ¹	Degree of Cementation	Sand Cone Method	Nuclear Method	Seismic Methods
0	GM/SM	Uncemented	104.2	103.5	108.9
2.5	GP-GM	Uncemented	93.0	96.4	108.9
5	GP-GM	Moderately to Strongly		101.1	128.0
7.5	GP-GM	Moderately to Strongly	81.5	127.5	128.0
10	GP	Weakly to Moderately	102.4	111.1	128.0
12.5	GP	Uncemented	102.3	116.1	117.8
15	GP	Uncemented	111.8	112.2	117.8
17.5	GP	Uncemented		113.8	117.8

Notes: ¹Unified Soil Classification System classification

²pounds per cubic foot

COMPARISON OF SOIL CORES AND SEISMIC GEOPHYSICAL METHODS

Comparison of In-Situ Dry Density for Soil Cores and Seismic Geophysical Methods as a Function of Soil Classification

USCS Soil	Average Dry	Difference in Average Dry	
Classification ¹	Soil Cores	Seismic Methods	Density (pcf)
GC	117.0	109.5	7.4
GM	116.2	113.0	3.2
GP	134.8	125.7	9.1
GP/SP	130.2	124.0	6.2
GP-GC	139.8	117.5	22.3
GP-GM/SP-SM	122.6	120.7	1.9
ML/SM	107.2	102.8	4.4
SM/SP-SM	102.2	103.8	-1.6
	agaification System alogai	Average Difference ³	4.4

- Notes: ¹Unified Soil Classification System classification
 - ²pounds per cubic foot
 - ³Average difference without GP-GC soil due to the large variance

DETERMINATION OF EARTHWORK FACTORS

- What Information Do We Need?
- How Do We Calculate Earthwork Factors?
 - % Shrink =[1-γ_{ex}/<mark>γ_{emb}</mark>] x 100
- where:
- γ_{ex} = In-Situ Dry Density of Material to be Excavated
- γ_{emb} = Dry Density of Compacted Embankment Material

DETERMINATION OF DENSITY OF COMPACTED EMBANKMENT

- Obtained Maximum Dry Density Using Standard Proctor Laboratory Test
 - Used Soil Samples from Soil Cores and Test Pit
- Seismic Refraction of Existing Roadway Embankment
 - No Existing Roadway Embankments Within the Project Vicinity

EARTHWORK FACTORS

Shrink = $[1-\gamma_{ex}/\gamma_{emb}] \times 100$

Earthwork Factors with Depth				
Depth (ft)	Earthwork Factor (%)			
0 to 3 – 5	4 to 8 Shrink			
3 – 5 to 20	4 to 10 Swell			
Below 20	0 to 4 Swell			

The project has been completed and there were no disagreements on earthwork quantities.

CONCLUSION

- In-Situ Densities from Seismic Geophysical Methods:
 - Compared Favorably to Soil Cores in Cemented and Coarse-Grained Soils
 - Compared Favorably to Sand Cone and Nuclear Methods in Fine-Grained and Uncemented Soils
- Seismic Geophysical Methods Should be Considered as an Additional Tool to Obtain In-Situ Densities in Cemented and Coarse-Grained Soils for the Development of Earthwork Factors

