Fatigue Endurance Limits for Perpetual Pavements

By

Waleed Zeiada, Ph.D.

November 14, 2013

Civil, Environmental, and Sustainable Engineering

Tempe, AZ 85287-5306

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Outline

Background

- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Background

HMA Fatigue Damage/Cracking

• **Definition:** A load associated damage due to repeated traffic loading.

Description: Three different stages

Early Stage

Intermediate Stage

Final Stage

Perpetual Pavements

- **Definition:** Term used to describe a long lasting HMA pavements.
- At least 50 years
- Full depth asphalt, 1960s
- Three HMA layer system
- Increases pavement recycling
- Cost savings
- Environmental benefits.

Endurance Limit

Definition: Wöhler (1870)

Does HMA Exhibit an Endurance Limit?

Monismith et al., 1970

Carpenter et al., 2003

• **HMA EL (Prowell et al., 2009)**:

Strain level yields 50 millions load repetitions until failure

Perpetual Pavement Design Concept

ra A. Fulton

ARIZONA STATE UNIVERSITY

Schools of Engineering

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Research Problem Statement and objectives

- The EL concept has not been totally implemented in AASHTOWare Pavement ME Design software
- No current methodology to consider the effect of the environmental conditions, traffic condition, mix design, and material properties together in the EL calculations
- Develop an algorithm to determine EL that is compatible with the AASHTOWare-ME software

New EL Definition

EL is a result of a balance of damage caused by loading and healing or damage recovery that occurs during rest periods

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Factors Affecting Fatigue and EL

Factors

Asphalt Content (%)	Binder Grade
Air Voids (%)	Aggregate Type
Temperature (°F)	Filler Percent
Rest Period (seconds)	Aggregate Gradation
Tensile Strain (µs)	Test Type

10 Factors with 3 levels: 3^10 = 59049 tests
Three replicates: 69049 * 3 = 177147 tests
Assuming average of 10 hours per test
Total of 202 years

Selected Factors

Factors	No. of Levels
Asphalt Content, AC (%)	4.2, and 5.2
Air Voids, Va (%)	4.5, and 9.5
Temperature, T (°F)	40, 70, and 100
Rest Period, RP (seconds)	0, 5, 1, and 10
Tensile Strain, ε_t (µs)	L, M, and H
Binder Type	PG 58-28, 64-24, and 76-16

Test Type

Uniaxial Fatigue Test

			PG 58-28				PG 64-22				PG 76-16			
Binder Type Binder Content														
		4	.2	5	.2	4	.2	5.2		4.2		5	.2	
	Air Voids (%)		4.5	9.5	4.5	9.5	4.5	9.5	4.5	9.5	4.5	9.5	4.5	9.5
Temperature, F	Tensile Strain	Rest Period (sec)												
40 L 40	0					U	U		U					
	1													
	5					U	U	U	U					
	10													
	0					U		U	U					
	1						U							
		5						U	U	U				
	10							U						
	0			ļ				TT	U					
	Н	<u> </u>					TT		U					
		5					U							
	10					TT	TI	TT						
	L	0					U	U	U					
		5					II	II		II				
70 M	10						0	II	0					
	0					II	II	0	I					
	1						U	U	U					
	5					U	U	U	U					
	10													
		0												
	TT	1								U				
Н	5													
	10													
	0					U		U	U					
	T	1					U			U				
100 M	5	-4					U	U						
	10													
	0						U	U	U					
	1													
100		5					U	U		U				
	10						U							
		0						U						
	Н									TT				
		5								U				
		10					L							<u> </u>

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Healing of Micro-cracks

Algorithm Development for HMA Endurance Limit

engineering.asu.edu

Determination of Endurance Limit Using SR

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

First Generation SR Model

SR = f (T, AC,
$$V_a$$
, ε_t , RP, BT, and N)

- AC = Asphalt content, %
- $V_a = Air voids, \%$
- ϵ_t = Tensile Strain, μs
- T = Temperature, °F
- RP = Rest period, sec
- BT = Binder Type
- N = Number of cycles

First Generation SR Model

Form of First Generation SR Model

Effect of Rest Period

First Generation SR Model

$$R^{2}_{adj} = 0.979$$

SR = 0.1564774 + (0.00079*BT) + (0.070059744*AC) + $(0.00393*V_a) + (0.10095*RP) - (1.268*10^{-7}*N_f) - (0.0024676*T)$ - $(0.0001677*BT*AC) + (3.29961x10^{-5}*BT*RP) + (3.488*10^{-5})$ 6 *BT*T) + (0.00794848*AC*RP) - (0.0042225*V_a*RP) + $(0.0006044*AC*T) - (0.0001035*V_a*T) - (2.889*10^{-8}*RP*N_f) +$ $(2.9191*10^{-9}*N_f*T) - (0.0025*RP*T) - (3.97*10^{-7}*BT^2) (1.20135*10^{-5}*T^2) + (8.434*10^{-8}*BT^{2}*AC) - (2.8756*10^{-6})$ ⁸ *BT²*RP) + (1.9558*10⁻⁶ *AC*T²) + (6.6137*10⁻⁷ *V₂*T²) - $(1.582*10^{-11} * N_f * T^2) + (1.262x10^{-5} * RP*T^2) - (1.176*10^{-6})$ $*V_a*RP*T^2$) + (3.124*10⁻¹² $*N_f*RP*T^2$) - (7.4*10⁻⁷ *BT*AC*T) + $(3.92*10^{-7}*BT*RP*T)$ + $(0.00013185*V_a*RP*T)$ + $(2.19*10^{-7}*RP*T)$ $^{9} * N_{f} * RP * T$

EL Values From First Generation SR Model

EL Values From First Generation SR Model

□ PG 76-16 PG 64-22 PG 58-28

Second Generation PSR Model

BT, T, AC, V_a were replaced by initial stiffness, E_o

 $SR = f \left(E_{o}, \, \epsilon_{t} \, , \, RP \! , \, and \, N \right)$

R $^{2}_{adj} = 0.891$

 $SR=2.0844-0.1386*\log(E_{o})-0.4846*\log(\epsilon_{t})-0.2012*\log(N)+1.4103*tanh(0.8471*RP)+0.0320$ $*\log(E_{o})*\log(\epsilon_{t})-0.0954*\log(E_{o})$ $*tanh(0.7154*RP)-0.4746*\log(\epsilon_{t})*tanh(0.6574*RP)+0.0041*\log(N)$ $*\log(E_{o})+0.0557*\log(N)*\log(\epsilon_{t})+0.0689*\log(N)*tanh(0.0259*RP)$

Second Generation SR Model

EL from Second Generation SR Model

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Beam Fatigue Versus Uniaxial Fatigue Tests

Uniaxial Fatigue Versus Beam Fatigue

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Incorporation of EL into AASHTOWare-ME

1. Calculation of Endurance Limit

 $SR = f(E_o, \varepsilon_t, N, and RP)$

- E_o, Initial Stiffness (ksi)
- N = Number of cycles
- N of 20,000 is recommended
- RP= Rest Period (sec) RP = $t / \sum(NT)$
- ε_t, Tensile Strain, μs
 Tensile Strain is equal to the Endurance Limit at PSR = 1.0

Subbase

Incorporation of EL into AASHTOWare-ME

2. Incorporation of EL into Fatigue Damage

$$D_i = \Sigma (n_i / N_{f_i})$$

- D = Fatigue Damage
- n_i = Actual traffic for period i (Traffic Demand)
- N_{f_i} = Allowed Traffic in period i (Traffic Capacity)

If the calculated EL \geq the actual ε_t , the Ni is infinity and the Damage is zero

Wheel Loads

- Background
- Research Statement and Objectives
- Testing Plan and Design of Experiment
- Endurance Limit (EL) Algorithm Development
- Development of SR Models
- Comparison of EL from Uniaxial and Beam Fatigue
- Incorporating EL Methodology into AASHTOWare-ME
- Conclusions, and Recommendations

Conclusions

- HMA exhibits endurance limit
- Mixtures using softer binders exhibit higher endurance limits than mixtures using stiffer binders
- High binder contents and low air voids produced the high endurance limit values
- Endurance limit values were higher at high temperatures
- The endurance limit values from the beam fatigue exhibit similar trends compared to those of the uniaxial fatigue test
- The endurance limits obtained in this study can be incorporated in the AASHTOWare-ME

Recommendations

- Field calibration is needed
- Consider other types of aggregates, and mixes such as warm mix asphalt, asphalt rubber, and polymer modified mixtures

Acknowledgement

- NCHRP 944-A Project Panel
- ASU Project Team and Lab Support:
 - Dr. Matthew Witczak
 - Dr. Michael Mamlouk
 - Dr. Kamil Kaloush
 - Dr. Mena Souliman
 - Mr. Peter Goguen, and Mr. Kenny Witczak
- IPC: UPC global* The science of testing made easy
 - Mr. Con Sinadinos, Mr. Alan Feeley, and Mr. Stephen King

Questions!

40