
2011 AZ Pavements / Materials Conference 

 

An Overview of the New AASHTO 

MEPDG Pavement Design Guide 

15-16 November 2011 

Arizona State University 

Tempe, Arizona 

 

Dr. M.W. Witczak 

Principal Pavement Consultant 

AMEC E&I 



FEATURES OF THE AASHTO M-E 

PAVEMENT DESIGN GUIDE 

 Developed under the US NAS (National Academy of Sciences)–

NCHRP (National Cooperative Highway Research program)  

 

 $10,000,000 – 7 Year Effort (Largest Single US Transportation 

Research Project in the History of the US) 

 

 Project Team Leaders 

 AC/Flexible Pavements: Dr. M.W.Witczak 

 Rigid Pavements: Dr.M.Darter 
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Introduction 

 Road and Highways are a very significant cost for agencies to 
construct, maintain and rehabilitate (US Infrastructure worth 
$1,000,000,000,000) 

 

 Pavement design is a very complex process that involves many 
variables as well as the variation of each variable. It is one of the most 
complex Civil Engineering structures to design because we demand a 
FS=1.0 

 

 Mechanistic concepts provide a more rational and realistic 
methodology for pavement design; however, pavement response 
models are mathematically very complex and do not have single closed 
form equation solution. 

 

 The M-E PDG provides a consistent and practical method to design a 
pavement for a desired level of reliability.  

 



 The MEPDG considers a wide range of AC 
Flexible pavement structural sections for : 

 
 New pavement systems 

 Overlay pavement systems 
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 Conventional Flexible Pavements 

 Deep Strength HMA Pavements 

 Full-Depth HMA Pavements 

 "Semi-Rigid" Pavements 
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 HMA Overlay over Existing HMA: 

New            Existing 

 AC       Conventional AC 

 AC       Deep strength HMA pavements 

 AC       Full depth asphalt  

 AC       Semi-rigid pavements 

 HMA over JPCP 

 

 HMA over CRCP 
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 HMA over Fractured JPCP 

 Crack and Seat 

 Rubbilization 

 

 HMA over Fractured CRCP 

 Rubbilization 
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 The primary distresses considered in the MEPDG for flexible 
pavements are: 

 Permanent Deformation (rutting) 

 AC Layers 

 Unbound Base/Subbase/Subgrade Layers 

 Total Rut Depth 

 Fatigue Cracking  

 Top  Down-Longitudinal Cracking 

 Bottom Up- Alligator Cracking 

 Thermal Cracking 

 

 In addition, pavement smoothness (IRI) is predicted based on 
these primary distresses and other factors. 
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Asphalt 9 

Major Asphalt Pavement Distresses 

 Major pavement distresses 

 Permanent deformation 

 Fatigue cracking 

 Transverse (Thermal) cracking 

•How can we simulate these problems in 

the lab? 
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Dynamic Modulus Test 



 Dynamic Modulus Test (Level 1) 
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Construction of E* Master Curve 

AASHTO TP62-03 

5 Temperatures: 14, 40, 70, 100 and 130 oF 

6 Frequencies: 25, 10, 5, 1, 0.5 and 0.1 Hz 
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Construction of E* Master Curve  
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 Use any arbitrary temperature 

value as a reference 

 Normally this value is set to be 

at 70°F 

 Shift E* test results at other 

temp. to reference temp. by 

time-temp superposition 

 E* results are not changed 

 Can calculate E* values at any 

temp. and freq. from master 

curve 
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Advantages: 

 E* allows hierarchical characterization  

 takes care of aging  

 takes care of vehicle speed  

 can be linked to PG  Binder 

 E* approximates FWD back-calculated modulus 

 provides rational mechanistic material property for 

distress prediction 

 FHWA – AASHTO test protocols available 

 Distress predictive models available 

Dynamic Modulus (E*) 
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Indirect Tension Creep Test 
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Beam Fatigue Test 
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Rotational Viscometer 
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Dynamic Shear Rheometer 
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Assessment of Reliability 

FCo 

FCAve 

FCfailure 

FC 
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Hierarchical Input Process 

 Level   1 (High Reliability) 

Analysis of special problems 

Usually will incorporate Testing 

High Visibility/Risk/Cost Projects  

 

 Level  2 (Medium Reliability) 

Standard Design - Most Cases 

(Rigorous but practical) 

 

 Level 3 (Lower Reliability) 

Lower impact/risk projects 
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HIERARCHIAL APPROACH 

 (AC MODULUS) 
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Hierarchical Approach in NCHRP 1-37A 

 Major Reasons for Presence in M-E PDG 

 

 Allows for a Quantifiable Decision to be Made, 

Based on Benefit / Costs Regarding the Utility 

of Using Detailed Engineering Tests and Data 

Collection / Analysis Techniques Relative to 

Simple, Empirical Correlations or Engineering 

Guesses 
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Hierarchical Approach in MEPDG 

 Major Reasons for Presence in M-E PDG 
 

 Provide Quantifiable Methodology for Agency 

to Prove Certain High Profile, High Importance 

and High Cost Projects Justified 

    
 “Most Advanced State of the Art Technology is 

Mandated  to Save Significant Cost Benefits” 
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Hierarchical Approach in MEPDG 

 

 Major Reasons for Presence in M-E PDG 
 

 Collary is also True 

    
 “Many Projects do not Require Sophisticated , 

Advanced Engineering Approaches”  
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 Actual Traffic load spectra yields higher levels of 

rutting and cracking compared to the classical 

E18KSAL’s. 

 

 Traffic repetitions is a significant parameter 

influencing pavement distress. 

26 



27 

-

0.05

0.10

0.15

0.20

0.25

PG 82-22 PG 70-22 PG 64-22

Binder Grade

A
C

 R
u

tt
in

g
 (

in
)



 Binder stiffness has a significant influence upon AC 

rutting. 

 

 As the binder stiffness increases, AC rutting 

decreases. 

 

 In fact, as the entire HMA mix stiffness increases, 

AC rutting decreases. 
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 Traffic Speed Influences The AC Rutting. 

 

 Creep Speed (Parking Lot, Intersection 

Analysis) Causes Much More Damage To 

The Pavement Compared To Faster Highway 

Speeds.  
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 For all variables being the same, the higher 

the temperature of an environmental location, 

the higher the AC rutting becomes. 
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 AC thickness has a significant influence 

upon Alligator fatigue cracking. As the 

AC thickness increases, the amount of 

alligator (bottom-up) fatigue cracking 

decreases. 
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 The  more channelized that the vehicular 
traffic becomes, the more severe the 
pavement rutting becomes. 

 

 The severity of the rutting is magnified for 
layers near the surface. 
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 Presence of GWT near / within unbound 

material layers can significantly alter the 

material moduli and hence increase 

pavement damage.  
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 Binder stiffness has the greatest influence 

upon Thermal Fracture within a cold 

environment. 

 

 As the binder stiffness (or surface layer 

stiffness) increases, the AC Thermal Fracture 

increases. 
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 Thermal Cracking cumulatively increases over time. 

 Combined property of binder content and air void has 

an influence upon the Thermal Fracture. 

 In general, AC Thermal Fracture decreases with an 

increase of binder content and a decrease in air void. 
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 M-E PDG is the most powerful Pavement-Material 
Analysis-Design Tool ever developed. 

 M-E PDG will lead to a more fundamental analysis of 
the consequences associated with the material-
structure - environmental interaction. 

 M-E PDG has the potential for increasing pavement 
performance and life while decreasing life cycle costs 
associated with new and rehab scenarios. 
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Implementation Considerations 

 Be careful of blind application of Modified asphalts 
in MEPDG.  

 

 E* value may be okay 

 Distress performance prediction models (ac 
rutting, fatigue cracking and thermal fracture) 
generally calibrated with conventional asphalt 
mixtures 

 Performance prediction of Modified AC Mixtures 
questionable 

 Suggest local calibration 
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Implementation Considerations 

 MEPDG is an excellent product and major enhancement to 
current technology; however the technology is still evolving: 

 Do not expect perfect predictions 

 Need to locally calibrate to actual field performance 

 Must be prepared to Conduct Trench Sections!!!!!! 

 Need to have a well defined nationally coordinated 
approach to develop planned model enhancements 

 Reflective cracking 

 Rutting and fatigue cracking model enhancements 

 Chemically Stabilized Materials Calibration 

 Performance of modified mixtures 

 Refinement of level standard deviations for use in 
reliability models 


