Warm Mix Asphalt in Texas

Cindy Estakhri, P.E. Texas Transportation Institute

Dale Rand, P.E. Texas Department of Transportation

TxDOT's Warm Mix Asphalt-Definition

- Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed.
- When WMA allowed, temperatures should be from 215°F to 350°F.
- When WMA required, temperatures should be from 215°F to 275°F.

Warm Mix Benefits

- More Durable Pavement
 - Less oxidized + less absorption = better fatigue life
- Better in-place densities
 - Improved fatigue life
 - better bonus for contractor
- Wider Paving Window
 - > Winter Paving
 - Night Paving
- Reduced Emissions, Smoke & Odor
- Direct Energy Savings ~ \$1/ton
- Less problems with crack seals swelling

Current Status

- WMA is allowed for use at Contractor's option on most HMA projects
- A few districts require WMA by plan note
 - Environmental reasons non attainment areas
 - > Overlays on pavements with rubber crack seal
- Most Contractor's have or are in the process of installing a WMA additive system

TxDOT Warm Mix Jobs

October 2008: ~120,000 tons

October 2007:

• October 2009: 1,000,000 tons ++

October 2010: Widespread Implementation

2000 tons

Many WMA Proprietary Technologies Available (19+)

Foaming Processes

introduce small amounts of water which turns into steam, expanding the binder phase and reducing mix viscosity.

- Astec Double Barrel Green
- Terex WMA System
- Maxam Aqua Black
- Advera

Chemical Modifiers rely

on a variety of different mechanisms, such as surfactants to help coat the aggregate at lower temperatures or waxes which decrease the viscosity above their melting point.

- Evotherm
- Rediset
- Sasobit

TTI Research What we did.....

- Effects of Warm Mix Additive on Mixture Design
 - 3 Mixing and Compaction Temperatures
- Effects of Warm Mix Additive on Performance Tests
 - Hamburg
 - Overlay Test
 - Resilient Modulus
 - Fatigue Analysis
- Field and Laboratory Evaluation/Demonstration Projects
- Field Performance Evaluations

Field Evaluation

- Cores
 - Hamburg
 - Overlay Test
 - Indirect Tension
 - Density
 - X-ray computed tomography
- Ground Penetrating Radar (uniformity of construction)
- Falling Weight Deflectometer

Field Projects Evaluated

		1	
District	Service Age	<i>Quantity of WMA</i>	WMA Process
San Antonio	5 years	2000 tons	Evotherm
Lufkin	4 years	800 tons	Evotherm
		800 tons	Advera
		800 tons	Rediset
		800 tons	Sasobit
Fort Worth	4 Years	36000 tons	Evotherm
Austin	4 Years	8000 tons	Evotherm
Wichita Falls	4 Years	68000 tons	Double Barrel Green
Beaumont	4 years	1000 tons	Rediset

What we found.....

in terms of

- Effect of WMA on Selection of AC Content (Mix Design)
- Effect of WMA on Performance Tests
- Effect of WMA on QC Requirements
- Effect of WMA on Field Performance

Item 340/341 Mix Design

Texas Gyratory Mix Designs

Effect of Warm Mix Additive on Mix Design – Asphalt Content

WMA should be designed without the additive to avoid low AC content mixes

Effect of WMA on Performance Tests

Hamburg Wheel Tracking Decrease in rutting resistance Overlay Test Increase in cracking resistance Indirect Tensile Strength Decrease in tensile strength **Dynamic Mechanical Analysis** Improvement in fatigue life Surface Energy Measurements Decrease in moisture resistance

Hamburg Results Lab-Molded Plant Mix

TTI Overlay Test

Overlay Test Results Lab-Molded Plant Mix

Hamburg At Different Curing Conditions

Hamburg Wheel Tracking Data San Antonio (Loop 368)

Overlay Test Data San Antonio (Loop 368)

US 71 Austin District

Hamburg Wheel Tracking Test

Warm Mix Oven Cured @ 250 F

No. of Load Applications

Significance of Aging/Stiffening Effect

- The oven curing time and temperature is a critical factor in performance tests and laboratory molded density (QC).
 - Curing at compaction temperature may yield poor Hamburg results for WMA which may not reflect field performance.
 - Curing at temperatures above compaction temperature can yield very high lab molded densities (in the pay penalty range).

FM 324 - Lufkin

Lufkin Project after 4 years

Field Performance

- Equivalent to HMA
- Uniformity of construction
- Uniformity of density
- Structurally equivalent to HMA

BU 287 Fort Worth District

File Colormap Trace Process Display Options Compute REW Help

Structural Strength Testing with FWD

Perpetual Pavement SH 114		Warm Mix Shoulder on BU 287	
Type B Chico Limestone		Type B Chico Limestone	
4.5% PG 64-22		4.3% PG 64-22 WMA (Evotherm)	
E @ 106 F	580 ksi	E @ 93 F	739 ksi
E @ 77 F	1392ksi	E@ 77 F	1256 ksi
	No significant	difference	

X-Ray CT Image

Air Void

Pending WMA Issues/Concerns

- Long Term Performance?
- Constructability Issues Tenderness.
- ➤ Use of RAP and RAS with WMA.
- > Mandated Use of WMA may be on the Horizon.
- > Use in Mixes other than dense-graded.

4 month old new surfacing

IH 20 SMA F Summer 2010

- Designed with PG 76-22
- Changed to PG 70-22 after passing Hamburg
- Warm Mix (foam) selected as contractor option
- Temperatures not reduced because of thin mat
- Severe bleeding experienced all lanes all directions
- Problems observed during record high temps in summer 2010

Findings

- Warm mix additives improve compactability which can lead to a reduction in asphalt content if incorporated in the mixture design process.
- WMA is initially less stiff than HMA but stiffens considerably within the first year of service and with increases in laboratory oven curing time/temperature.
- Field performance of WMA is comparable to HMA. Uniformity of WMA construction may be better than HMA.

Recommendations

- Design WMA mixtures without the additive for selection of asphalt content.
- Do performance tests on WMA with the additive.
- For quality control of WMA, oven cure mix at the warm mix compaction temperature.

For performance testing, increase oven curing time/temperature to better represent data from field core testing and to standardize a process for curing all warm mixes similarly.

San Antonio Loop 368 Performance Good After 5 Years

