Impact of site location and groundwater table depth on the thickness of flexible airfield pavements

Claudia E. Zapata¹ & Ramadan Salim²

¹Assistant Professor ² Graduate Student

2012 Arizona Pavements/Materials Conference

Tempe, AZ - October 31st, 2012

ARIZONA STATE UNIVERSITY

Agenda

Intro Objective Analysis Results Summary and Conclusions Recommendations

part I: introduction

Environmental effects on pavement design and performance is a fundamental component of any Mechanistic-**Empirical Pavement Design** procedure.

However, current airfield design procedures do not consider the effects of groundwater table depth and the effect due to environmental conditions.

There is a significant need to incorporate the influence of environmental site factors and the groundwater table depth upon flexible airfield pavement design and performance.

A methodology and computer code has been developed at **Arizona State University that** allows for this analysis, including special considerations for unsaturated regions.

part II: objective

Provide a quantitative assessment of the potential benefits and savings in pavement design thickness that occur due to the inclusion of specific environmental site properties

Environmental site properties analyzed included moisture, temperature and groundwater table depth

The study focuses upon the prediction of pavement thickness to guard against excessive shear deformations or rutting for asphalt pavements.

Analysis is provided for a series of aircraft types, subgrade support values, different geographic locations across the US, and a range of GWT depths.

part III: the analysis

Claudia E. Zapata

Matthew Witczak

Carlos Cary

ZAPMEDACA

Ramadan Salim

Mena Souliman

Daniel Rosenbalm

5 different climatic conditions

6 groundwater table depths

3 subgrade soils

Experimental Matrix

2 levels of design traffic

This study used the Limiting Subgrade Strain criteria developed for the newly revised USACE-β approach. **The Limiting Subgrade Strain** criteria is a performance criteria applicable to design for excessive shear deformations (rutting) of the pavement.

The USACE limiting strain criteria is expressed as follows:

$$\log(\varepsilon_{v_{sg}}) = \frac{-2.1582 - 1.3723 \log(N_f)}{1 + 0.4115 \log(N_f)}$$

Material Properties and Structure

Layer Number	1	2	3		4	
Material Type	Asphalt	Base	Subbase	Su	ubgrade	
Thickness (in)	6.0	14.0	Variable	Sen	ni-Infinit	e
Poisson Ratio	0.35	0.40	0.45		0.45	
Elastic Modulus (ksi)	300	38	32	20	10	5
AASHTO Classification		A-1-b	A-2-4	A-4	A-6	A-7-6
Passing #200 (%)		17	22	60	70	80
Plasticity Index , Pl		1.5	4	6	14	28
Specific Gravity, G _s		2.65	2.68	2.68	2.69	2.68
w _{opt} %		8	14	12	15	20
γ _{d max} (pcf)		130	115	119	114	102

ZAPMEDACA implementation modules

Load Configuration

Airbus A-380 Number of Tires 10 Tires Location (in) Distance Between Loading Points, S_d (in) Tires Location (in) 300 Load per Tire (lb) 59400 • Tire Pressure (psi) 218 250 Pressure Distribution Uniform **Tire Imprint Shape** Elliptical Number of the Main Gear for Each Side 2 200 150 Pavement Width Analyzed, (ft) Number of Longitudinal Segments (dy) in Tire Imprint 10 E 150 Number of Transversal Segments (dx) in Tire Imprint 10 10 Number of Radial Segments (dr) in Tire Imprint 100 Size of Angular Segments (d0) in Tire Imprint 10 Distance to Mean Location of Load for main Gear1, xj1 (ft) 20.40 50 Distance to Mean Location of Load for main Gear2, xj2 (ft) 8.40 Distance from y Axis to Centerline of Main Gear1, yj1 (ft) 20.87 0 Ö 50 100 150 200 250 300 Distance from y Axis to Centerline of Main Gear2, yj2 (ft) 10.17 Y (in) Horizontal Tire Spacing , Sd1 , Sd2 (in) 53.10 Vertical Tire Spacing, St1, St2 (in) 61.00

Loading Points Cartesian Coordinates (in)

	1	2	3	4	5	6	7	8	9	10
X	74.25	127.35	74.25	127.35	74.25	127.35	218.25	271.35	218.25	271.35
Y	61.00	61.00	122.00	122.00	183.00	183.00	219.90	219.90	280.90	280.90

Pavement Structure and Material Properties

Traffic Input

Passes of Vehicle at Base Year, Pjo	4000
Design Life(yr)	20.00
Traffic Growth Rate (%)	2.00
Passes of Vehicle at End of Design Life, Pjt	98158
Gear Wander Standard Deviation, fjx (ft)	12

Layer	Suction, $\boldsymbol{\psi}$	SWCC Constants				Degree of	S% at	Environmental	Resilient Modulus,		
	(psi)	a _f b _f		C _f	h _{rf}	Saturation, S%	Optimum	Factor, F_U	M _R (psi)		
Above GWT: Asphalt											
Above GWT: Gran. Base	9	5.0	3.28	1.28	500	55.7	93.6	1.512	60,462		
Below GWT: Gran. Base	0					100.0	93.6	0.937	37,496		
Below GWT: Gran. Sub-base	0					100.0	77.4	0.539	10,789		
Below GWT: Subgrade	0					100.0	83.8	0.402	3,214		

Stress Analysis

						Computa	ation of De	oths (in)				
			Depth 1	Depth 2	Depth 3	Depth 4	Depth 5	Depth 6	Depth 7	Depth 8	Depth 9	Depth 10
		z	145.4									
					Compu	itation Poi	nts (in)					
		Xit	X _{i2}	X _{i0}	Xid	X _{is}	X.6	×.,	Xie	× _{i9}	Xito	Xitt
Yit	0	0	20.16	40.32	74.25	100.8	127.35	172.8	218.25	244.8	271.35	324.4
¥i2	61	0									1	
¥i2	122					500				l		
Yia	183		OTires Location	n (in)		275		• • •		-*		
Yis	201.45		Points of Inte	rest (in)		250 # #						
Y 16	219.9					225						
¥i7	250.4					200 .				- -		
Y _{i0}	280.9					175 . * *	× 🔳 🛪 🛛					
						150						
								• •		*		
						100						
						75						
						50						
						25						
						• • •	* * * *			*		
		-340	-300 -260 -	220 -180 -1	40 -100 -60	-20 20	60 100	140 180 2	20 260 30	0 340		
						-50						
						-75						
						100						
		G.										

Stress Analysis

Rutting Design Criteria

/ertical Subgrade Strain Cri	iteria					×
Shell Oil Criteria (Airfield	ds) Mistilline Apphatine	titure (Auffahlts) USACE.WES (Original MLET) USACE.WES (Revised)		
Maximum strain at the top of subgrade Number of repetitions to failure (Nf) Unit damage (dj)	Point1 Point2 Point2 Point2	Point3 Point4 Point4 Point4	Point5	Point? Point8	Point9 Point10 Point10	Point11 Point12
			Update data	Calculate	Cancel	

Passes of Vehicle at Base Year,	Pjo
Traffic Growth Rate (%)	
Design Life (Years)	
	Update Data
	Ok Cancel

Rutting Design Criteria

Rutting Design Criteria

Vera	Annual	Annual	Cumulative	Cumulative	Interval of
Year	Trame	мах	Tramic	мах	the Max Damage,
	(Pass)	Damage (%)	(Pass)	Damage (%)	Xj- max (ft)
1	4040	31.17	4040	31.17	± 0.5
2	4121	31.79	8161	62.96	± 0.5
3	4203	32.43	12364	95.38	± 0.5
4	4287	33.07	16651	128.46	± 0.5
5	4373	33.74	21024	162.19	± 0.5
6	4460	34.41	25484	196.60	± 0.5
7	4550	35.10	30034	231.70	± 0.5
8	4641	35.80	34674	267.50	± 0.5
9	4733	36.52	39407	304.02	± 0.5
10	4828	37.25	44235	341.26	± 0.5
11	4925	37.99	49160	379.25	± 0.5
12	5023	38.75	54183	418.00	± 0.5
13	5124	39.53	59307	457.53	± 0.5
14	5226	40.32	64533	497.85	± 0.5
15	5331	41.12	69863	538.97	± 0.5
16	5437	41.95	75300	580.92	± 0.5
17	5546	42.78	80846	623.70	± 0.5
18	5657	43.64	86503	667.34	± 0.5
19	5770	44.51	92273	711.85	± 0.5
20	5885	45.40	98158	757.26	± 0.5

part IV: the results

Resulting subgrade modulus after considering the environmental effects for 5 cities

M _R (opt)	M _R (Sat)	M _R for Unsaturated Soil Conditions													
		Athens		Miami		Dallas		L.	A.	Phoenix					
		S _r	M _R	S _r	M _R	S _r	M _R	S _r	M _R	S _r	M _R				
5161	2073	97.2	2424	96.2	2575	93.6	2984	82.4	5593	60.4	16261				
10046	4788	96.4	5834	95.5	6111	93.6	6763	86.1	10046	69.4	22174				
20048	7384	96.4	8799	95.6	9158	93.8	10020	86.1	14544	69.0	31637				

Resulting subgrade modulus after considering the environmental effects for 5 cities

Cost savings are proportional to savings of subbase thickness

Subbase thickness (in) for selected aircrafts

Number	M _R of	ONE	Thickness of subbase (in)														
of	Subgrade	GW I		Boe	ing B737	7-600		AIR	BUS IND	DUSTRIE	E A30	0-C4		BOEI	NG B747	7-400	
Passes	(psi)	(π)	Athens	Miami	Dallas	L.A.	Phoenix	Athens	Miami	Dallas	L.A.	Phoenix	Athens	Miami	Dallas	L.A.	Phoenix
		0.50	29	29	29	29	29	68	68	68	68	68	95	95	95	95	95
		1.67	27	27	26	26	26	66	66	65	65	65	93	93	93	92	92
	5	3.00	20	19	19	18	17	59	58	58	57	56	86	86	85	84	84
		5.00	17	16	14	8	0	49	48	47	45	43	76	75	74	72	71
		8.00	17	16	14	8	0	43	42	38	24	1	60	58	56	51	36
		15.00	17	16	14	8	0	43	42	38	24	1	58	54	48	30	4
	10	0.50	16	16	16	16	16	44	44	44	44	44	54	54	54	54	54
		1.67	14	14	14	13	13	43	42	42	42	41	52	52	52	51	51
100.000		3.00	8	7	6	2	1	36	35	35	34	33	45	45	44	43	42
100,000	10	5.00	8	7	6	2	0	25	23	19	14	1	33	32	29	27	19
		8.00	8	7	6	2	0	25	23	19	7	0	31	29	25	10	1
		15.00	8	7	6	2	0	25	23	19	7	0	31	29	25	10	1
		0.50	10	10	10	10	10	25	25	25	25	25	35	35	35	35	35
		1.67	8	8	7	7	7	23	23	23	22	22	33	32	32	32	31
	20	3.00	4	3	2	0	0	17	16	15	13	9	26	25	25	24	23
	20	5.00	4	3	2	0	0	11	10	8	2	0	14	13	10	5	0
		8.00	4	3	2	0	0	11	10	8	2	0	14	13	10	5	0
		15.00	4	3	2	0	0	11	10	8	2	0	14	13	10	5	0

Required subbase thickness (in) for Boeing B737-600

Required subbase thickness (in) for Airbus A300-C4

Required subbase thickness (in) for Boeing B747-400 N = 100,000

Required subbase thickness (in) for Boeing B747-400 N = 1'000,000

part V: summary and conclusions

ZAPMEDACA software/program is a powerful analytical tool that incorporates environmental effects in airfield design

This has not been accomplished by any other airfield pavement design procedure used in the world!!

Savings of subbase material up to 2.5 feet for lighter B-737 aircraft to as much as 3 to 8 feet for heavier B-747 aircraft may occur when unsaturated soil mechanics / environmental conditions are incorporated in the pavement design process.

Savings are obvious when design thicknesses are compared to those obtained with the classical assumption used in most pavement design methods that rely upon fully saturated evaluation of all unbound material layers.

Results generated from this study provide quantitative evidence of the significant savings that may be accrued in the design, construction and rehabilitation of airfield pavements by using unsaturated soil mechanics principles in the design methodologies

part VI: recommendations

Several major additions need to be made to enhance **ZAPMEDACA** to consider a wider range of computational improvements, additional distress types and real time environmental model changes in unbound layers for flexible airfield pavement systems

Controlled full-scale field tests to validate the results of **ZAPMEDACA** analysis are necessary and highly recommended

Major US and International airfield pavement design agencies responsible for airfield operation should carefully re-evaluate the current state of the practice and move to incorporate more precise and rational theories and methodologies

The authors would like to acknowledge the general guidance, valuable input and recommendations given by **Professor Matthew Witczak**

part VII: acknowledgments

part VIII: thanks!