Arizona AGC Pavement Preservation Series

Micro Surface and Slurry Seal Guide for Application and Construction

Darryn Olson

Micro Surface and Slurry Seal Guide for Application and Construction

Foreward

The Arizona AGC Pavement Preservation guides are collections of best practices and recommendations for the state of Arizona. Microsurfacing and Slurry Seals are important pavement preservation tools, and when constructed properly they increase the life of a pavement. Following these guidelines and using a reputable AGC member contractor will also contribute to the overall success of the project.

There will be instances where conditions or materials dictate the need to deviate from these guides. It is important that contractors, suppliers, and agencies work together and use common sense to modify these recommendations as needed.

The Arizona Chapter of the Associated General Contractor's Pavement Preservation committee developed this guideline to identify "best practices" to be used during the application of microsurfacing and slurry seals.

The committee is comprised of contractors, material suppliers, aggregate producers and agency personnel. Special thanks to our partners in the Arizona Department of Transportation: Bill Hurguy, State Materials Engineer and Janet Doerstling Pavement Materials Testing Manager for their contributions...

Micro Surface and Slurry Seal Guide for Application and Construction

- Introduction
- Surface Conditions and Preparation
- Materials
- Equipment
- Placement Practices
- Construction Procedures
- Method of Measurement
- Summary
- Checklists

Introduction

This document is provided as a guide for suppliers, contractors, agencies and owners.

Microsurfacing and Slurry seals are cost effective preservation treatments used to maintain and extend the service life of pavements and roadways. These applications extend the life of pavements by preventing moisture intrusion into the base course and sub-grade. Additional benefits include increased skid resistance and improved aesthetics. When properly constructed, microsurfacing and slurry seal applications are cost effective tools that provide improved life cycle benefits.

Although microsurfacing and slurry seals are generally similar, microsurfacing is designed to facilitate a quicker return to traffic, heavier application rate, rut filling, and support higher traffic volumes.

This guide contains best practice information to improve consistency. Many variables affect the successful application of microsurfacing and slurry seals. These variables will be discussed in more detail:

- Existing Surface Conditions
- Surface Preparation
- Materials
- Equipment
- Placement Practices
- Construction Procedures

Surface Conditions and Preparation

Surface Conditions Limitations

- When Micro Surface or Slurry Surface
- Preparation

Surface Conditions

Surface Conditions - Limitations

Surface Conditions – Micro or Slurry

Surface Preparation

Surface Preparation

Materials

Aggregate Type I Type II Type III Aggregate Considerations Emulsions Mix Design

Materials - Aggregate

For high performance microsurfacing and slurry seals, quality aggregate is mandatory. Some of the key indicators of quality aggregate are: proper gradation, particle shape, cleanliness, soundness, and resistance to abrasion.

Materials – Aggregate Type I

Type I aggregate has the smallest size gradation. It is primarily used to address minor surface defects such as surface voids and cracks. It is also used when protection from the elements is the main reason for resurfacing. Type I aggregates are commonly used for airfields and parking lots.

Materials – Aggregate Type II

Type II aggregate is used to fill surface voids and correct moderate surface defects. It is typically used on pavements with medium-textured surfaces that require correction of weathering and raveling, while producing an adequate wearing surface for medium to heavy traffic.

Materials – Aggregate Type III

Type III aggregate (the largest gradation) is used to improve friction, and skid resistance. Durability is also improved due to increased mat thickness. It is best-suited for higher-traffic pavements such as collectors, arterials and major highways. When Type III aggregates are used in microsurfacing, stability is also increased, making the gradation ideal for rut filling and reestablishing profiles with minor surface irregularities.

Materials – Aggregate Considerations

Materials – Emulsions

Materials – Mix Design

Clier Project Nam Project No Contac	ie: 5.:							ceived:					
		Comp	onent	Identif	icatio		-						
Material	Grade		T	Sup				Sou	Irce		T	-	-
Mineral Aggrega					-		1			-	-		
Asphalt Emulsio			1000		1.12		-					103596	3
Mineral Admixtu			-	la colari								103521	
Set Control Addit Mixing Water	ive Aluminum S Distilled		-		2.00	-				1000		103521	3
	ssing #200 (75 µm) Sieve				•				-		1	N/A	
7 Type 11117, - 05301 0.	ang neoo (ro pin) orere.	Trial	Mix I	dentifie	ation	-	-				-		
Trial M	fix Number		1	2		-	3	1	4		5	1 1	6
Mineral Aggregate			-	-		1					-		
Mineral Admixture	(% by weight of aggregate		.50	0.5			50		50				
Set Control Additive	(% by weight of aggregate		.50	0.5			50		50	1000			
Mixing Water Asphalt Emulsion	(% by weight of aggregate		8.0 0.0	6.			4.0		.0	-			
Residual Asphalt	(% by weight of aggregate (% by weight of aggregate		.24	7.4			4.0		5.0 98				
residuit risplant	The of Height of aggregate			1.0		0		9.	90	-	-	-	
	Pro	perties o	of fresh	ly mixe	ed Mi	croser	1	1000	1.00	-	E. V		-
	lix Number		1	2		-	3		4	13.00	5	1	6
	ne, TB113		120	>1			20	>120					
Set Time, TB102/D3910			Pass		55	Pass		Pass			1		
Consistency, TB106/D3910 (2.5 - 3 cm)		2	2.6	2.	9	2	.6	2	.6			-	
				-		-		-				-	
		-		1000		2		1		10000		- Ifing	
Wet Cohesio	n, TB139/D3910	kg-cm	Mode	kg-cm	Mode	kg-cm	Mode	kg-cm	Mode	kg-cm	Mode	kg-cm	Mode
	15 minutes cur			200		11	N	1		13/10		1000	
	(12 kg-cm min. for Quick Traff					13 20	N NS			1			
60 minutes cure:	(20 kg-cm min. for Quick Traffi 90 minutes cur		-			20	NS			-		-	
	120 minutes cu			-		23	S			-			
	240 minutes cu			-	1	24	SS	-					
A CONTRACTOR OF THE OWNER			200		1					-			1000
Non No. 1 Strategy		Wet		rial #3	aph			-	-	-		-	-
	11/	t Cohe			/D 3	010							
	W	a Cones	sion, 1	0-139	103	10							
30		1000	-	-		-	+						
Ę ²⁵	+ +												-
20													
0 Daherian, kg-cm										-			-
10													
3													
0					-	-	al and	-		-			160
0	60 120		-	180			240			300			JOU
			cure Tin	ie, minut	es.		The second	1000	_		-	_	-

Project Name:	Date Reported: 05-13-2010 Material: Cationic PM Asphalt Emulsion Material Source:						
			1				
		Grade: ample ID;	RTE 042710-1				
		Received:	042710-1				
		nple Date:	04-27-2010				
		ple Type:	Concentrate				
Tests on Emulsion	Test Method	Spec					
Saybolt Furol Viscosity, (77°F), s	AASHTO T59	15-100	21				
Sieve Test, %	AASTHO T59	0.30 max	0.03	1			
Residue by Evaporation, %	ARIZ 512	60 min.	62.4				
Particle Charge	AASHTO T59	positive	Positive				
Storage Stability, 24 hrs, %	AASIITO T59	1.0 max.	0.70				
Tests on Residue from Distillation to 350°F	AASHTO T59						
Kinematic Viscosity, 275°F, cSt	AASHTO T201	650 min.	812		the second second		
Penetration, (77°F), 100g, 5s, dmm	AASHTO T49	40 - 90	44	-			
Softening Point, °F	AASIITO T53	140 min.	144				
Ductility, (77°F), 5cm/min.cm	AASHTO T51	60 min.	93				
Tests on Residue after RTFO	AASHTO T240		3				
Kinematic Viscosity, 275°F, cSt	AASHTO T201		904				
Viscosity Ratio, RTFO / Original	AASHTO T201	2.5 max.	1.11	and the second second			
Softening Point, °F	AASHTO T53	140 min.	148				
Remarks: Specifications Reference Project S	pecial Provisi		tion T10-11-00033				

Equipment

Mixer Spreading Equipment Calibration

Equipment – Mixer

Equipment – Spreading Equipment

Equipment – Spreading Equipment

Equipment - Calibration

Each mixing unit shall be calibrated at least once per year for each aggregate source and type, or as required by the agency.

The calibration shall include a metered verification for each material used.

No machine should be allowed to work on the project until the calibration has been completed and/or accepted.

Average Agg. lbs/cnt (E₁) _____ + moisture factor¹ = Dry Agg. lbs/count

	Gate Setting	A	В	c	D	Ez
		Full Weight - LBS	Empty Weight - LBS	Net Weight -LBS (A-8)	No. of Counts	Lbs per Count (C+D)
0	4*					
	4-				- 20 20 20	
	4-					

Average Agg. lbs/cnt (E₂) _____ + moisture factor¹ = Dry Agg. lbs/count

Gate Setting	A	В	c	D	Ę
	Full Weight - LBS	Empty Weight - L8S	Net Weight -LBS (A-8)	No. of Counts	Lhs per Count (C+O)
5*		ALL SALES TRANS			1000
5*		23 W 22 8 2 4 4			
5*	and the second				

Average Agg. lbs/cnt (E₃) _____ + moisture factor¹ = Dry Agg. lbs/count _____

% of Moisture in Agg. in Decimal + 1.

+ 1.00 = Moisture Factor

Placement Practices

Construction Procedures

General Considerations
 Rolling
 Sweeping
 Traffic Control

Construction Procedures - General Considerations

Prior to Application Surface must be cleaned

Microsurfacing and Slurry seals should be applied when the surface temperature is 45° F and rising.

Slurry seal should not be performed if wind speeds are greater than 30 mph or rain is imminent.

Construction Procedures - Rolling

- Rollers are not typically needed.
- The rollers should carry a minimum loading of 2,000 pounds on each wheel, with a minimum tire pressure of 90 psi or as recommended by the equipment manufacturer.

Construction Procedures -Sweeping

Construction Procedures - Traffic Control

Before the project starts. You must have a approved Traffic Control Plan (TCP). Safety is everyone's responsibility. Do your part.

Traffic Control

Method of Measurement

There are two different types of measurement;

By the TonBy the Square Yard

Summary

- Complete all needed repair work and allow adequate curing time prior to the placement of the application.
- Microsurfacing and slurry seals should be applied when the surface temperature is 50° F or higher and the ambient temperature is 45°F and rising.
- Materials should be tested prior to and during all phases of construction to assure specification compliance.
- Use and follow a current mix design for each project.

Checklist Construction Techniques/Application

1.	Is traffic control in compliance with approved plan?	YES	NO
2.	Have pavement markers been considered?		
3.	Is the ambient temperature at 45°F and rising?		
4.	Is the pavement clean and dry?		
5.	Is there a chance of rain during the daily production?		
6.	Has the equipment been calibrated?		

Checklist Materials & Construction Techniques/Application

- 1. Is the area clean and dry?
- 2. Is the ambient asphalt temperature 45 degrees and rising?
- 3. Is area free of debris, cars, people, or equipment?
- 4. Is proper traffic control in place prior to starting application?
- 5. Have you had a Safety/Tail Gate Meeting?

Questions?