Optimal Timing of Chip Seal

Matild Dosa, M.S.

Presented by:

Waleed Zeiada

Postdoctoral Scholar, ASU.

November, 2012

Author's Contact Information

Matild Dosa, M.S. Wightman Petrie Company Matild.Dosa@asu.edu

Dr. Mike Mamlouk, PE., F.ASCE, Arizona State University mamlouk@asu.edu

Background: What is the Chip Seal?

Background: Preventive Maintenance Treatments

Background: Pavement Performance and Rehabilitation

Background: Expected Benefits of Successive Preventive Maintenance

Problem Statement

- No formal guidelines that tie chip seal treatment timing to effectiveness.
- Use of empirical, experience-based approach in applying chip seal.

Objectives and Scope of Study

- Evaluate the effectiveness of single-application of chip seal using IRI data from LTPP Database at different times.
- Compare the performance of chip seal sections to flexible untreated (control) sections.
- Relate findings to climatic, and traffic conditions.

Information Extracted from LTPP Database

ARIZONA STATE UNIVERSITY

Extraction of LTPP Sections

Chip Seal Section Criteria

- Single-layer surface treatment.
- Ignore sections that received other treatments at the same time as chip seal.

Control Section Criteria

- Flexible pavement only.
- No maintenance or rehabilitation treatments for a number of years.

Initial Roughness and Modeling

ARIZONA STATE UNIVERSITY

Evaluation of Long-Term Effectiveness

Extended service life.

Relative Benefit.

Benefit-Cost (B/C) Ratio.

Life Extension and Relative Benefit

R

Benefit-Cost Ratio

Benefit – Cost Ratio =
$$\left(\frac{B}{C}\right) \times 1000$$

where:

B = Benefit Area (B) and C = Cost (\$27,300 per lane-mile) (Hajj, et al. 2011; Loria, et al. 2011)

Treatment Timing-Based (TT) Analysis

Initial Condition-Based (IC) Analysis

Climatic Regions, Initial Condition Categories and Normalization

Initial Pavement Condition	Interval of Initial Roughness (in/mile)	Specified Initial Condition Value for Normalization (in/mile)	Climatic Regions
Smooth	40-80	60	Dry Freeze
			Dry Non-Freeze
			Wet Freeze
			Wet Non-Freeze
Medium	80-120		Dry Freeze
		100	Dry Non-Freeze
		100	Wet Freeze
			Wet Non-Freeze
Rough	120-160+ 140	140	Dry Freeze
			Dry Non-Freeze
		140	Wet Freeze
			Wet Non-Freeze

Number of Climatic Regions and Sections

Climatic Region	Section Type	Number of Sections		
		Initial Condition		
		Smooth	Medium	Rough
Dry Freeze	Chip Seal	26	7	3
	Control	33	6	3
Dry Non-Freeze	Chip Seal	6	8	3
	Control	45	7	1
Wet Freeze	Chip Seal	20	16	3
	Control	27	7	2
Wet Non-Freeze	Chip Seal	15	6	5
	Control	40	23	2

ARIZONA STATE UNIVERSITY

Normalized Performance Curves for Wet Freeze, Smooth Initial Condition

Wet Freeze, Smooth Initial Condition

Normalized Performance Curves for Wet Freeze, Medium Initial Condition

Wet Freeze, Medium Initial Condition

AR

Normalized Performance Curves for Dry Freeze, Rough Initial Condition

Wet Freeze, Rough Initial Condition

AR

Life Extension Due to Chip Seal

Relative Benefit

Relative Benefit of Chip Seal Based on Initial Pavement Condition

Benefit-Cost Ratio

Benefit-Cost Ratio for Chip Seal Based on Initial Pavement Condition

Climatic Region

Conclusions

- Treated sections performed better than untreated sections, as assumed.
- Chip Seal Life Extension:
 - Smooth \rightarrow 4-7 years
 - Medium \rightarrow 2-3 years
 - Rough \rightarrow 0-1 years
- <u>Chip Seal Relative Benefit:</u>
 - Smooth \rightarrow 22-29 percent
 - Medium \rightarrow 16-21 percent

- Rough \rightarrow 0-11 percent

Conclusions

- <u>Chip Seal Benefit-Cost Ratio:</u>
 - Smooth \rightarrow 8-15
 - Medium \rightarrow 3-4
 - Rough \rightarrow Zero

<u>Climate:</u>

No true correlation found between effectiveness,
Traffic, and climatic conditions.

engineering.asu.edu

Thank You!

