Evolution of Pavement Design at ADOT

Paul Burch, PE Chief Pavement Design Engineer Arizona Department of Transportation

2012 Arizona Pavements / Materials Conference October 30-31, 2012 Arizona State University

A Little History

1960's to Present

The 60's

 AASHO Interim Guide for the Design of Rigid and Flexible Pavements - 1961

 Asphalt Institute Thickness Design (MS-1) – April1965

- Traffic Analysis 18 kip single axle loads
- Mechanical Strength Tests (CBR, R-Value, Plate Bearing Test)
- Thickness Design Charts

The 70's

- 1972 AASHTO Interim Guide for Pavement Structures
- Deflection Based Designs for O/L's
- Pavement Management System
- Soil Stabilization
- Recycle projects
- Asphalt Rubber SAM's and SAMI's
- Heater Scarification

The 80's

- AASHTO 1986
- Milling Machines
- Falling Weight Deflectometer (FWD)
- SODA
- Cold In-Place Recycling
- Asphalt Rubber

Where We Are: ADOT Current Design Practices

- 1993 AASHTO Pavement Design Guide
 - Flexible Pavements
 - Rigid Pavements
- Materials
 - Superpave Mix Design
 - PG Binder Grading System
 - WMA
 - Back to RAP
 - CIR and HIR

PUBLISHED BY THE . AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Designing New Pavements

 $Log_{10}(W_{18}) = Z_{R} \times S_{O} + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_{R}) - 8.07$

- 1993 AASHTO Pavement Design Guide
- Calculates Structural Number (SN)
- Traffic (cumulative 18 Kip ESAL's)
- Standard error for traffic and overall pavement performance prediction (S₀)
- Initial and Terminal design serviceability index (P₀ & P_t)
- Reliability (Z_R) likelihood of pavement failure within design period. Typically 90% – 99% used.
- Resilient Modulus (M_R)
- Seasonal Variation Factor (SVF)

ADOT Current Design Practices

 Structural Overlay Design for Arizona (SODA)

Rehabilitation of existing
 flexible pavements

Arizona Department of Transportation

Materials

Preliminary Engineering and Design Manual

Pavement Rehabilitation

- Structural Overlay Design for Arizona (SODA)
- Traffic (18-Kip ESAL's)
- Deflection Data (FWD)
- Spreadability Index
- Seasonal Variation Factor (SVF)
- Road Roughness (IRI)

A Vision for the Future – SPR-402

"Development of Performance Related Specifications for Asphalt Pavements in the State of Arizona"

Arizona State University

Plan and Committee

- Five year research effort
- 3 phases
- 14 individual projects
- \$1.5 million effort
- Began in 1999

Three Phases

Phase I, (project 1) - work plan for long range pavement research program
Phase II, (project 2 – 11) - materials characterization
Phase III, (project 12 – 14) - calibration /validation, performance related

specifications

SPR-402 – Phase II

- Materials Characterization
- Subgrade materials
- Base materials
- Binders
- Mixes
- Acquired Testing Equipment
- 2006 ran out of \$

Three Phases

- Phase I, (project 1) work plan for long range pavement research program
 Phase II, (project 2 11) materials characterization
 Phase III, (project 12 14) calibration /validation, performance related
 - specifications

Traffic Inputs – SPR 672

 Development of a Traffic Data Input System in AZ for the MEPDG

Research completed by ARA

- Default Statewide level 2/3 traffic inputs
 - Vehicle class distribution
 - Monthly adjustment factors
 - Hourly distribution
 - Axle load distribution factors
 - Number of axles per truck
 - Lateral wander
 - Truck wheel base

Calibration & Validation – SPR-606

"Calibration and Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide in Arizona"

Applied Research Associates ARA

Why Local Calibration?

• To ensure that all design inputs are proper and that they are tailored to Arizona conditions and resources.

 To ensure that the distress and IRI prediction models are unbiased (e.g., do not consistently over or under predict).

• To reduce the error of prediction of the distress and IRI models (used in design reliability).

• To provide a user's guide and training for ADOT designers.

Calibration Steps

Verification

 Verification involved testing the model predictions using global coefficients but using only AZ performance data. If the model showed bias (over or under prediction overall) it was identified for recalibration.

Calibration Steps

Re-Calibration

 Re-Calibration involved deriving new local coefficients for each model using the AZ performance data to remove the bias and reduce the prediction error. (90% of calibration database used).

Calibration Steps

Validation

• Validation involved a further independent check of the models using the 10 percent of the calibration database withheld from the calibration effort.

This process was done to check that the MEPDG "local Arizona" models work as intended

Why Calibrate?

 The goodness of fit for the HMA IRI model improved from R² = 30% with global coefficients to 80% with Arizona specific coefficients. The standard error of IRI was reduced from 19 to 8 in/mile.

Calibration Sites

Total of 180 sections

- 120 LTPP
- 36 ADOT Pavement Management Sections
- 20 ADOT SPR 264 sections (concrete pavements)
- 4 ADOT WRI sections

All sites had detailed design, construction, materials testing and distress survey data.

New HMA & HMA/HMA Pavements

New JPCP and CRCP

Composite (HMA overlaid JPCP and CRCP) Pavement

Table 59. DARWin-ME local calibration coefficients for new HMA and HMA overlaid HMA pavement.

Model or Submodel Type	Model Coefficients	ADOT Local Calibration	Change from "Global" Models
	K1	0.007566	No
	K2	3.9492	No
Fatigue Damage Model	K3	1.281	No
(AC Fatigue)	BF1	249.0087232	Yes
、 Ç /	BF2	1	No
	BF3	1.233411397	Yes
	C1	1	No
Alligator Cracking	C2	4.5	Yes
Model	C4	6000	No
(AC Cracking Bottom)	AC Cracking Bottom Standard deviation	1.1+22.9/(1+exp(-0.1214- 2.0565*LOG10(BOTTOM+0.0001)))	Yes
	а	3.5+0.75heff	No
Reflection Cracking	b	-0.688584-3.37302*heff ^{-0.915469}	No
Model	С	2.55	Yes
	d	1.23	Yes
	K1	-3.35412	No
	K2	1.5606	No
AC Rutting	K3	0.4791	No
	BR1	0.69	Yes
	BR2	1	No
	BR3	1	No
	AC Rutting Standard Deviation	0.0999*Pow(RUT,0.174)+0.001	Yes
Passa Putting	K1 (Base)	2.03	No
(Granular Suborade	BS1 (Base)	0.14	Yes
Rutting)	Base Rutting Standard Deviation	0.05*Pow(BASERUT,0.115)+0.001	Yes
	K1 (subgrade)	1.35	No
Subgrade Rutting	BS1 (Subgrade)	0.37	Yes
(Fine Subgrade Rutting)	Subgrade Rutting Standard Deviation	0.05*Pow(SUBRUT,0.085)+0.001	Yes
	Thermal Fracture Level 1K	1.5	No
	Thermal Fracture Level 1 Standard Deviation	0.1468 * THERMAL + 65.027	No
HMA Transverse	Thermal Fracture Level 2K	0.5	No
(Thermal Fracture)	Thermal Fracture Level 2Standard Deviation	0.2841 *THERMAL + 55.462	No
	Thermal Fracture Level 3K	1.5	No
	Thermal Fracture Level 3 Standard Deviation	0.3972 * THERMAL + 20.422	No
	C1 (for Rutting)	1.2281	Yes
UMA IDI Model	C2 (for Fatigue)	0.1175	Yes
riviA IKI Model	C3 (for Transverse)	0.008	No
	C4 (for Site Factor)	0.0280	Yes

Table 60. DARWin-ME local calibration coefficients for new JPCP.

Table 61. DARWin-ME local calibration coefficients for new CRCP.

Model or Submodel Type	Model Coefficients	ADOT Local Calibration	Change from NCHRP 1-40D "Global" Models
BCC Estima Madal	C1	2	No
PCC ratigue Model	C2	1.22	No
	C3	85	Yes
CD CD During have	C4	1.4149	Yes
Madal	C5	-0.8061	Yes
Model	PCC Punchout Standard Deviation	1.5+2.9622*Pow(PO,0.4356)	Yes
	C1	3.15	No
CDCD IDI Madal	C2	28.35	No
	PCC IRI CRCP Standard Deviation	5.4	No

Table 64. Comparison of MEPDG "global" and Arizona specificmodel goodness of fit statistics.

		Globa	al Models	Arizona DOT C	alibrated Models
Pavement Type	Distress/IRI Models	ress/IRI fodels Global R ² , Global Model percent* Standard Error, I		Arizona R ² , percent	Arizona Standard Error, SEE
	Alligator cracking	8	14 percent	58	13 percent
New HMA & HMA Overlay	Transverse "thermal" cracking	NA	NA	Not Calibrated	Not Calibrated
	Total rutting	5	0.31 in	21	0.12 in
	IRI	30	19 in/mile	80	8 in/mile
	Transverse cracking	20	9 percent	78	6 percent
New JPCP	Transverse joint faulting	45	0.03 in	52	0.03 in
	IRI	35	25 in/mile	81	10 in/mile
ARFC/JPCP	Transverse cracking	Same as JPCP	Same as JPCP	Same as JPCP	Same as JPCP
	Rutting	Same as HMA	Same as HMA	Same as AZ HMA	Same as AZ HMA
	ÎRI	Same as HMA	Same as HMA	Same as AZ HMA	Same as AZ HMA
New CRCP	Punchouts	68%	5 PO/mile	Same as Global	2 AZ CRCP matched global predictions
	Slab/Base Friction	Established Values	NA	Same as Global	NA

*Global calibration coefficients using the Arizona database.

Summary Of Changes To DARWin-ME For Arizona

Mechanistic Empirical Pavement Design

Summary Of AZ Calibration Changes

- Distress & IRI prediction model coefficients were modified to provide improved prediction & design:
 - HMA pavement
 - Total rutting
 - Fatigue cracking (bottom up)
 - IRI
 - Transverse cracking (could not be calibrated, will not predict cracking for warm climate locations)
 - JPCP & Composite
 - Transverse fatigue cracking
 - Joint faulting

Summary Of Other AZ Changes

Changes in various design input recommendations:

- Design reliability levels for AZ
- Design standard deviation models all distresses for AZ
- AZ recommended Level 2 and 3 inputs for all materials and design types
- Recommended procedure for AC overlay design

 Numerous other input recommendations tailored to AZ conditions (initial IRI, strength of PCC, traffic inputs, unbound base resilient modulus, other material defaults, etc.)

ADOT DARWin-ME Users Guide

Arizona DOT USER GUIDE FOR AASHTO DARWin-ME Pavement Design Guide

Submitted to:

Arizona Department of Transportation 206 S. 17th Ave. Phoenix, AZ 85007

Submitted by:

100 Trade Centre Dr., Suite 200 Champaign, IL 61820

July 19 2012

ADOT DARWin-ME Users Guide

- Overview of Manual
- General Information
- Performance Criteria
- Reliability
- Traffic Inputs
- Climate

- Materials
- Sensitivity
- Concrete
- Rehabilitation
- AZ Calibration Factors
- Example Problems

Design Example – New HMA US 93, MP 2.4 to MP 17.2

93' AASHTO DESIGN

- ESAL's 16,200,000
- R-value 46
- Mr 26,000
- SVF 1.2
- Reliability 95%
- Std Dev 0.35

SN_{req} - 3.55
SN_{des} - 3.60
5" AC over 10" AB

Same Project – DARWin-ME

Hoover Dam to MP 17_AC5.0

File Name: C:\Documents and Settings\b5395\Desktop\Hoover Dam to MP 17_AC5.0.dgpx

Design Inputs

Design Life: 20 years Design Type: Flexible Pavement Base construction: March Pavement construction: April, Traffic opening: May, 3

March, 2011 C n: April, 2011 S May, 2011

Climate Data 35.259, -113.937 Sources (Lat/Lon)

Traffic

Design Structure

Layer type Material Type Thickness (in.): Volumetric at Construction: Heavy Trucks Age (year) Default asphalt Effective binder (cumulative) Flexible 5.0 10.8 concrete content (%) 2011 (initial) 801 AB (Aggregate Air voids (%) 7.6 NonStabilized 10.0 2021 (10 years) 1,509,270 Base) 2031 (20 years) Subgrade Semi-infinite 3,537,600 A-1-a

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Relia	Specified bility	Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Satisfied ?
Terminal IRI (in./mile)	150.00	121.38	90.00	99.21	Pass
Permanent deformation - total pavement (in.)	0.50	0.30	90.00	99.99	Pass
AC bottom-up fatigue cracking (percent)	15.00	10.31	90.00	96.88	Pass
AC thermal fracture (ft/mile)	1000.00	27.17	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	2000.00	2066.62	90.00	89.22	Fail
Permanent deformation - AC only (in.)	0.50	0.22	90.00	100.00	Pass

Distress Charts

Same Project – DARWin-ME at 4.5" AC

Hoover Dam to MP 17 AC4.5

File Name: C:\Documents and Settings\b5395\Desktop\Hoover Dam to MP 17_AC4.5.dgpx

Design Inputs

DARWIN

Design Life: 20 years Design Type: Flexible Pavement

Base construction: Pavement construction: Traffic opening:

March, 2011 April, 2011 May, 2011

Climate Data 35.259, -113.937 Sources (Lat/Lon)

Design Structure

Layer 3

	Layer type	Material Type	Thickness (in.):	Volumetric at Constr	ruction:
: С Ы	Flexible	Default asphalt concrete	4.5	Effective binder content (%)	10.8
	NonStabilized	AB (Aggregate Base)	10.0	Air voids (%)	7.6
100	Subgrade	A-1-a	Semi-infinite		

	Traffic			
1	Age (year)	Heavy Truck (cumulative)		
	2011 (initial)	801		
ן ו	2021 (10 years)	1,509,270		
	2031 (20 years)	3,537,600		

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Relia) Specified bility	Reliabi	lity (%)	Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in./mile)	150.00	121.40	90.00	99.21	Pass	
Permanent deformation - total pavement (in.)	0.50	0.30	90.00	99.98	Pass	
AC bottom-up fatigue cracking (percent)	15.00	13.04	90.00	92.99	Pass	
AC thermal fracture (ft/mile)	1000.00	27.17	90.00	100.00	Pass	
AC top-down fatigue cracking (ft/mile)	2000.00	2097.06	90.00	88.86	Fail	
Permanent deformation - AC only (in.)	0.50	0.22	90.00	100.00	Pass	

Distress Charts

Same Project – DARWin-ME at 4"

Design Inputs

DARWin

Design Life: 20 years Design Type: Flexible Pavement

Base construction: Pavement construction: Traffic opening:

March, 2011 April, 2011 May, 2011

Climate Data 35.259, -113.937 Sources (Lat/Lon)

Traffic

AASHTOWar

Design Structure

	Layer type	Material Type	Thickness (in.):	Volumetric at Construction:			Heavy Trucks
Layer 1 Flexible : D	Elevible	Default asphalt	4.0	Effective binder	10.8	Age (year)	(cumulative)
Layer 2 Non-stabil	Flexible	concrete	4.0	content (%)	10.8	2011 (initial)	801
	NonStabilized	AB (Aggregate	10.0	Air voids (%)	7.6	0004 (40	4 500 070
Layer 3 Subgrade	Nonotabilized	Base)	10.0			2021 (10 years)	1,509,270
State .	Subgrade	A-1-a	Semi-infinite			2031 (20 years)	3,537,600

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Relia) Specified bility	Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in./mile)	150.00	121.44	90.00	99.20	Pass
Permanent deformation - total pavement (in.)	0.50	0.30	90.00	99.98	Pass
AC bottom-up fatigue cracking (percent)	15.00	15.81	90.00	88.80	Fail
AC thermal fracture (ft/mile)	1000.00	27.17	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	2000.00	2040.87	90.00	89.52	Fail
Permanent deformation - AC only (in.)	0.50	0.22	90.00	100.00	Pass

0.13

Distress Charts

10

Sotto

10 12 14 16 18

Pavement Age (years)

@ 50% Reliabilit

Design Example – Rehabilitation I-40, MP 239.95 to MP 250.25 Constructed 2009 SODA Design

- AADT 16,500 (2007); 47% Trucks; AADTT - 7,755;
- ESAL's 18,800,000 (10 years)
- Existing 11" AC; 4" BB; 2" AB, 6" SM
- SODA: @4" mill No Overlay needed; 2005 FWD
- Design: 5" mill, 4.5" replace and 1/2" AR-ACFC

Same Project – DARWin-ME (As – Built)

Dennison to County Line_Constructed

File Name: C:\Documents and Settings\b5395\Desktop\Dennison to County Line_Constructed.dgpx

Design Inputs

DARWin

Design Life:	10 years
Design Type:	AC over AC

Existing construction: Pavement construction: Traffic opening:

May, 1991 August, 2009 September, 2009

Climate Data 35.022, -110.722 Sources (Lat/Lon)

Design Structure

	Layer type	Material Type	Thickness (in.):	Volumetric at Consti	ruction:
Layer 1 Flexible : I Layer 2 Flexible : I Layer 3 Non-stabil	Flexible	Default asphalt concrete	5.0	Effective binder content (%)	10.8
Layer 4 Non-stabil	Flexible	Default asphalt concrete	6.0	Air voids (%)	7.6
	NonStabilized	AB (Aggregate Base)	6.0		
	NonStabilized	AS (Aggregate Subbase)	6.0		
	Subgrade	A-2-7	Semi-infinite		

Traffic

Age (year)	Heavy Trucks (cumulative)
2009 (initial)	7,755
2014 (5 years)	6,767,190
2019 (10 years)	14,612,200

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in./mile)	150.00	107.49	97.00	100.00	Pass
Permanent deformation - total pavement (in.)	0.50	0.43	97.00	99.66	Pass
Total Cracking (Reflective + Alligator) (percent)	100.00	100.00	-		-
AC thermal fracture (ft/mile)	1000.00	39.41	97.00	100.00	Pass
AC bottom-up fatigue cracking (percent)	10.00	2.88	97.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	2000.00	480.75	97.00	100.00	Pass
Permanent deformation - AC only (in.)	0.50	0.43	97.00	99.66	Pass

Same Project – Optimized

File Name: C:\Documents and Settings\b5395\Desktop\Dennison to County Line_2.5_Fair_1.dgpx

Design Inputs

DARM

Design Life: 10 years Design Type: AC over AC Existing construction: Pavement construction: Traffic opening:

May, 1991 August, 2009 September, 2009

Climate Data 35.022, -110.722 Sources (Lat/Lon)

Design Structure

Traffic

	Layer type	Material Type	Thickness (in.):	Volumetric at Construction:		
Layer 2 Flexible : [Flexible	Default asphalt concrete	2.5	Effective binder content (%)	10.8	
Layer 4 Non-stabil Layer 5 Subgrade	Flexible	Default asphalt concrete	8.5	Air voids (%)	7.6	
	NonStabilized	AB (Aggregate Base)	6.0			
	NonStabilized	AS (Aggregate Subbase)	6.0			
	Subgrade	A-2-7	Semi-infinite			

Age (year)	Heavy Trucks (cumulative)			
2009 (initial)	7,755			
2014 (5 years)	6,767,190			
2019 (10 years)	14,612,200			

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Satisfied ?
Terminal IRI (in./mile)	150.00	107.52	97.00	100.00	Pass
Permanent deformation - total pavement (in.)	0.50	0.45	97.00	99.41	Pass
Total Cracking (Reflective + Alligator) (percent)	100.00	100.00	-	-	-
AC thermal fracture (ft/mile)	1000.00	39.41	97.00	100.00	Pass
AC bottom-up fatigue cracking (percent)	10.00	2.24	97.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	2000.00	483.10	97.00	100.00	Pass
Permanent deformation - AC only (in.)	0.50	0.45	97.00	99.42	Pass

Existing Composite Pavement Comparison At Calibration Site I-10, MP 60 – MP 70

- Constructed 1994, outer lane
- 0.5-in ARFC
- 14-in JPCP, 1.5-dowels, widened slab
- 13, 15, 17-ft perpendicular joint spacing
- 6-in Aggregate base HMA shoulders

Example AZ Composite Design:

DARWin–ME Design (Calibration Site)

- Project on I-10, MP 60
- 20 year design trucks = 42 million
- Climate: Desert
- Soil: A-2-4, Mr = 28,000 psi (backcalculated & adjusted)
- DARWin-ME design results (99% R)
 - 1-in ARFC
 - 11-in JPCP, 15-ft joint space, 1.5-in dowels
 - 6-in Aggregate base
 - HMA shoulder

Existing Composite ARFC/JPCP (Calibration Site)

After 17 years IRI = 54 in/mi

Negligible rutting, trans. jt. refl. cracks no JPCP fatigue cracks

Implementation of DARWin-ME

- ADOT currently running DARWin-ME designs on all projects
- Training continuing with ARA (AASHTO Service Units)
- Plan to begin phasing in DARWin-ME designs on a case by case basis
- Consultant community

Future Improvements

- Evaluation of ASU Lab Testing
- Evaluation of Low Temperature Cracking Model
- Research into cause of transverse cracking of HMA in desert warm non-freezing areas
- WIM data collection (SPR 672 Recommendations)
- Asphalt Rubber Mixes

