ON THE PATH TO AUTONOMOUS VEHICLES

Dr. Bill Sowell, MBA, PhD
Vice President- Eberle Design, Inc. & Reno A&E (USA)
Vice Chairman- International Road Federation (IRF) Executive Committee & Board of Directors
Chairman- IRF Intelligent Transportation Systems (ITS) & Systems Engineering Committee
Chairman- NEMA 3TS Performance Measures Technical Committee (TS-9 Standard)
AGENDA

• Introduction and Definitions
• History
• Today
• Potential
• Autonomous Vehicle Programs
• Predictions and Conclusions
INTRODUCTION
VEHICULAR AUTOMATION

- **Vehicular automation** involves the use of:
 - Mechatronics (Mechanics + Electronics)
 - Artificial Intelligence (AI)
 - Multi-agent System

 to assist a vehicle's operator *Automatic Driver Assist System*, or “ADAS”.

- These vehicle features may be labeled as *“intelligent”* or *“smart”*.

- A vehicle using **automation for difficult tasks**, especially navigation, may be referred to as *“semi-autonomous”*.
DEFINITIONS

• An **autonomous car** is a type of **autonomous vehicle** capable of fulfilling the human transportation capabilities of a traditional car.

• An **autonomous vehicle**, is capable of sensing its environment and **navigating without direct human input** (i.e., truck, small delivery, paratransit, drones).
HISTORY
TIMELINE

1890
- Electric cars invented (William Morrison) and commercialized as taxis

1920
- First 4-way three-color traffic control device, basis for the modern traffic signal (William Potts, a Detroit Traffic Police Superintendent)

1930
- Embedded circuits and radio controllers

1950
- Detector Circuits
- Special Radio Receivers
- Audible And Visual Warning Devices

1960
- Electronically Controlled Highways
- Vehicles Powered And Controlled By Buried Cables or magnets
- Wayside Communicators Relaying Computer Messages
- First solid state digital intersection traffic controller
- GM engineers design the “Driver Aid, Information and Routing (DAIR), which relied on punch cards to provide information for basic turn-by-turn direction
EARLY PREDICTIONS

• Inspired by the efforts of an electric utility company, Central Power and Light Company, launched an advertorial that was posted in many leading newspapers throughout 1956 and 1957 and predicted the arrival of autonomous cars:

• ELECTRICITY MAY BE THE DRIVER.
TIMELINE

- Extensive systems engineering work and research
- First commercial sale of a video-based vehicle detection system
- Onboard video cameras and use of stereoscopic vision algorithms
- RFID-tags used for tolling, access control and infrastructure security
- Introduction of fully adaptive traffic management systems

1970
- First microprocessor-based intersection traffic controller

1980
- Laser radar, computer vision and autonomous robotic control
- Off-road map and sensor-based autonomous navigation

1990
- Real-Time Control System

2000
- Artificial Intelligence (AI) released for commercial use
- GPS, LIDAR, 3D mapping, cameras, advanced sensors, etc.

2010
- First commercial sale of a video vehicle tracking-based detection system
2007- FIRST AUTONOMOUS VEHICLES

- **Stage 1 →** Porsche Cayenne. This autonomous vehicle was designed by the Georgia Institute of Technology in collaboration with Science Applications International Corporation (SAIC) for the Defense Advanced Research Projects Agency’s (DARPA) Urban Challenge in 2007.
TODAY
VEHICLE HARDWARE

- RADAR
- Optics
- LIDAR
- GPS
- Processors
- Wheel Speed Sensors
LOCATION, SURROUNDINGS, HAZARDS, OTHER VEHICLES
• Traditional **RADAR** sensors are used to detect dangerous objects in the vehicle’s path that are **more than 100 meters away**.

• Accident-Prevention Systems (APS) trigger alerts when they detect something in a blind car’s blind spot.

• The radar chirps between **10 and 11 GHz** over a 5 millisecond period, transmitting the radar signal from a centrally located antenna cone.

• Two cone receivers, separated by approximately 14 inches, receive the reflected radar energy.
• A camera mounted near the rear-view mirror builds a real-time 3D image of the road ahead, spotting hazards like pedestrians and animals.

• It is also used to identify road markings and traffic signals.
LIDAR
A **Global Positioning System (GPS)** keeps the car on its intended route with an **accuracy of 3-4 meters. (Versus desired accuracy of 30 centimeters)**

With GPS covering the macro location of car, smaller on-deck cameras can recognize smaller details like red lights, stop signs and construction zones.
NAVIGATION SYSTEMS

• In-dash navigation today:
 ➢ Pros: seamless integration with vehicle.
 ➢ Cons: Expensive; limited data and performance; inferior to smart phone apps like Waze, Google Maps.

• Smart Phone apps:
 ➢ Pros: no additional expense needed; superior performance to in-dash.
 ➢ Cons: small screen size; not integrated, harness needed.
PROCESSORS

• Some seven (7) dual-core 2.13 GHz processors and 2GB of RAM are needed to make sense of the data collected by the car’s instruments.

• Some cars run as many as 17 processors to share the computing load.
WHEEL SPEED SENSORS

- *Wheel Speed Sensors* measure the road-wheel speed and direction of rotation.
- These sensors provide input to a number of different automotive systems including the *anti-lock brake system and electronic stability control.*
• The signal from the sensors are used by the On-Board Unit (OBU) & Electronic Control Unit (ECU) for decision-making using a software code.

• Based on the information from the sensors, the Electronic Control Unit gives signal to the actuators, which in turn control the vehicle.

• Also, real time information of the surroundings is output to the user interface located inside the vehicle.
AUTONOMOUS VEHICLE OPERATION

- Sensors
 - LIDAR
 - Optical Image
 - RADAR
 - GPS
 - Wheel Speed

- Electronic Control Unit
 - Software
 - Decision Making
 - Checking Functionality
 - User Interface

- Actuators
 - Servo Motors and Relays
 - Steering Wheel Control
 - Brake Control
 - Throttle Control
POTENTIAL
BENEFITS, CHALLENGES AND OBSTACLES
FUTURE NAVIGATION

• With the arrival of connected vehicles, in-dash navigation systems will become far more powerful as they will be updated in real time by the overall fleet – routing, traffic conditions, and road pavement conditions – even the location of a new pothole!

• In-dash will be complimented by phone app for additional functionality (one account, data transfer)

• Example: HERE next generation navigation in-dash and app, was released in 2019 which learns from driver preferences and make informed suggestions for routing.
BENEFITS

• Safety:
 - Gradually fewer traffic collisions and injury accidents (as technology is deployed and gains acceptance)
 - Improved response time of first responders to accidents—police, fire, paramedics
 - Ultimately: the realization of “Vision Zero”—No more roadway fatalities or serious injury accidents

• Efficiency:
 - Lower speed limit with decreased gap and headway for autonomous cars...leading to...
 - ...Increased roadway capacity and reduced traffic congestion
 - Alleviation of parking scarcity—integrated parking guidance systems
 - Reduction of physical road signage—move toward “in vehicle” signage
 - Smoother ride with decreased stops

• Human Factors:
 - Relief of vehicle occupants from driving and navigation chores
 - Removal of constraints on occupants' state of mentation/impairment

• Government and Regulatory:
 - Reduction in the need for traffic police and vehicle insurance premiums
ELIMINATION OF “DILEMMA ZONE”

HUMAN VS. COMPUTER
DISTANCE REQUIRED TO STOP

A human takes about 2 seconds to react and press the brakes.

A computer takes about .3 seconds to compute and apply the brakes.

Legend

Reaction

Deceleration

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Human Reaction</th>
<th>Human Deceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>27 ft</td>
<td>27 ft</td>
</tr>
<tr>
<td>30</td>
<td>109 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>60</td>
<td>304 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>90</td>
<td>584 ft</td>
<td>0 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Computer Reaction</th>
<th>Computer Deceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>30</td>
<td>53 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>60</td>
<td>192 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>90</td>
<td>416 ft</td>
<td>0 ft</td>
</tr>
</tbody>
</table>
OBSTACLES AND CHALLENGES

- Safety (Technology and Legal)
 - Liability for damages due to vehicle systems malfunction (who pays?)
 - New custom chips will have to be developed for true AI for autonomy, needing far more reliability, accuracy and redundancy *
 - New software will have to be developed with far greater power, reliability, accuracy and redundancy **
 - Autonomous cars relying on lane markings cannot decipher faded, missing, or incorrect lane markings – significant attention will be required on all roadways
 - Temporary construction / work zones which are not posted to any maps or databases
 - Determination of the severity of traffic lane obstacles, as in the question of safely straddling a pothole or roadway debris ***
 - What about pedestrians and bicyclists? Will they require smartphones or DSRC transponders?
HUMAN VS. MACHINE VISION

HARDWARE COMPARISON

The human eye sees details equivalent to **576 Megapixels**

The finest digital camera sensors today are around **50 Megapixels**

All the microchips on Earth combined execute about \(6.4 \times 10^{18}\) calculations every second

That’s roughly equal to one human brain
OBSTACLES AND CHALLENGES (2)

• Human factors:
 ➢ Resistance for individuals to forfeit control of their cars to machines *
 ➢ Reliance on autonomous drive produces less experienced drivers when manual control is needed, such as in work/construction zones **

• Security:
 ➢ Cybersecurity - Electronic security of in-vehicle systems, roadside systems and control network
 ➢ Terrorism - Potential misuse by bad actors (car bombs)
OBSTACLES AND CHALLENGES (3)

- Government and Regulatory:
 - Implementation of legal framework and establishment of a comprehensive government-led, consensus-based regulatory framework for self-driving cars *
 - Lack of government funding to upgrade existing, and install new intersection equipment with Roadside Units (RSU) to receive wireless data via DSRC/5G/C-V2I from all connected vehicles
 - All solutions must be multi-modal in nature and include Class 1 rail, light rail, bus, ride sharing, autonomous taxis, etc.

- Privacy:
 - Continued loss of personal privacy/ personal movement can be easily monitored
AUTONOMOUS VEHICLE PROGRAMS

1. Short to Mid-term Applications
2. Mid to Long-Term Applications
3. Long-Term Applications
1. SHORT TO MID-TERM APPLICATIONS/DEPLOYMENTS
AUTONOMOUS DELIVERY VEHICLES

Nuro’s prototype self-driving vehicle is about half the width of a standard sedan. Tests by end 2018.
Udelv, a competitor, is demonstrating its delivery vehicle, ferrying groceries from a store in Silicon Valley to two customers.
EasyMile, another competitor, demonstrating autonomous baggage tractor for airport use
BENEFITS

• Ideal for e-commerce growth.
• So called “first mile, last mile” applications. Door-to-Door mobility is needed.
• Ideal for high density urban areas and night time delivery (quiet).
• Delivery object does not have to drive smoothly, something that has been hard for autonomous cars.
• Regulatory approval easier: the AI doesn’t have to make the complicated decision of [whether to] protect the passengers or the pedestrians because there are no passengers.
• More room for error - smaller than ordinary cars.
• Unlike other delivery robot start-ups, which design machines to travel at low speeds on pavements alongside pedestrians, these new vehicles will drive on the road and follow the same rules as regular traffic.
2. MID TO LONG-TERM APPLICATIONS/DEPLOYMENTS
Para-transit (small buses) is an immediate and obvious application.

- Immediate and significant benefits (lives saved, accident costs, labor costs).
- Low-speed, fixed routing in residential areas and business areas (feeding travelers to bus and subway stations).
- Successful tests around the world, U.S. examples:
 - Transdev in Florida, USA (with EasyMile)
 - First Transit in Northern California (with EasyMile)
TRUCK PLATOONING

• Platooning is one of the most effective ways to optimize logistics, transport flows and systems.

• Not full autonomy – lead vehicle driver present (faster regulatory approval)
3. LONG-TERM APPLICATIONS
AURORA

• Unlike some Silicon Valley start-ups such as Zoox, Aurora wants to partner with traditional carmakers (not go at it alone). Partnerships with Hyundai and others.

• Its vehicles have driven more than 5 million miles on public roads.
• Zoox concept car (founded by former Apple engineers)
APPLE CONCEPT SELF-DRIVING CAR

- Physical car project shelved for now
- Autonomous driving system under development
- Deep integration with iOS expected
- Autonomous testing permit received from Department of Motor Vehicles (DMV)
TESLA SELF-DRIVING CAR

• All new Tesla vehicles produced, including Model 3, have the hardware needed for full self-driving capability at a safety level substantially greater than that of a human driver.
UBER SELF-DRIVING CAR

• Self-driving tests in San Francisco & Phoenix (suspended)
Self-Driving Car Fatalities to Date

<table>
<thead>
<tr>
<th>Date</th>
<th>Incident Number</th>
<th>Country</th>
<th>City</th>
<th>State/Province</th>
<th>Quantity of Fatalities</th>
<th>System Manufacturer</th>
<th>Vehicle Type</th>
<th>Distance Driven by System at Time of Incident</th>
<th>Notes</th>
<th>Post Accident Vehicle Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Jan 2016</td>
<td>1</td>
<td>China</td>
<td>Handan</td>
<td>Hebei</td>
<td>1</td>
<td>Tesla (Autopilot)</td>
<td>Tesla Model S</td>
<td>Not Available</td>
<td>Driver Fatality-Truck collision</td>
<td>Not Available</td>
</tr>
<tr>
<td>7 May 2016</td>
<td>2</td>
<td>USA</td>
<td>Williston</td>
<td>Florida</td>
<td>1</td>
<td>Tesla (Autopilot)</td>
<td>Tesla Model S</td>
<td>130,000 miles</td>
<td>Driver Fatality</td>
<td></td>
</tr>
<tr>
<td>18 Mar 2016</td>
<td>3</td>
<td>USA</td>
<td>Tempe</td>
<td>Arizona</td>
<td>1</td>
<td>Uber</td>
<td>Retrofit-Volvo</td>
<td></td>
<td>Pedestrian Fatality</td>
<td></td>
</tr>
<tr>
<td>23 Mar 2018</td>
<td>4</td>
<td>USA</td>
<td>Mountain View</td>
<td>California</td>
<td>1</td>
<td>Tesla (Autopilot)</td>
<td>Tesla Model X</td>
<td></td>
<td>Driver Fatality</td>
<td></td>
</tr>
</tbody>
</table>
TOYOTA PRIUS MODIFIED TO OPERATE AS A GOOGLE DRIVERLESS CAR
GOOGLE SELF-DRIVING CAR PROJECT (WAYMO)

Over 10 million miles self-driven (as of 11/15/2018)
World’s first commercially available driverless car by France-based robotics company **Induct.**
AUTONOMOUS TRUCKS

• Fastest potential adoption (along with para-transit – small buses) and immediate economic benefit for freight companies (45% of cost of freight is labor).

• Examples of current efforts:

 ➢ **European Truck Platooning Challenge** (2016), several participants including Daimler).

 ➢ EU-funded **Ensemble initiative** to implement and demonstrate multi-brand truck platooning by 2021.

 ➢ **Partially Automated Truck Platooning Demonstration** (September 2017)
 ○ Heavy trucks followed each other using automated speed and spacing controls. The platooning is based on the Cooperative Adaptive Cruise Control (CACC) System.
Fully autonomous trucks for mining, trash collection, and other hazardous or difficult applications.
WAYMO (SUBS. OF ALPHABET)

Autonomous trucks by Waymo being tested on US highways
Autonomous truck by Daimler testing along US highways (driver supervised) and at the CCTA’s GoMentum Station test bed in northern California. Also testing platooning in the US and the EU.
OTTO (SUBS. OF UBER)

Testing in Northern California
CHALLENGES

• Human drivers are still required to control the trucks, for example when truck platoons travelling on highways have to separate at junctions.

• Several other barriers remain before trucks can shed their human drivers. For starters CONNECTIVITY (as in Connected Vehicles) is essential, and across-brands and types of vehicle via a single harmonized protocol.

• Regulatory harmonization between countries (EU, NAFTA, Mercosur) is needed so that trucks can pass smoothly across borders.

• “GPS-spoofing” or hacking to redirect trucks along with their freight for theft is a threat for fleets using autonomous navigation systems.

• Trailers pulled by cabs need significant changes before they can function autonomously. Trailers, which can be changed between different cabs, will have to be fitted with sensors that allow the lorry to “see” behind it and that can operate with the self-driving system of any given truck manufacturer.
Traffic data collection must be hardware and detection technology agnostic.

THE FUTURE OF BIG TRAFFIC DATA

Global Transport Data Exchange Platform™

- ITS (Traffic control electronics & detection)
- ATMS (Central traffic management systems)
- Auto Manufacturers (Toyota, Volkswagen AG, GM, Hyundai/Kia, Ford, Nissan, Fiat, Chrysler, Honda, Suzuki, Renault)
- Tier 1s (Denso, Continental, etc.)
- Ride Share (Uber, Lyft, Sidecar, Wingz, Summon, Taxify, HaXi)
- Mapping (Here, TomTom)
- 3rd Party Data Analytics (Private Sector)
- 3rd Party Data Warehouse (Private Sector)
- Adaptive Traffic Control (SCATS, SCOOT, ACS Lite, others)
- System Integrators / Tolling / etc.
HOW MUCH LONGER?
THE ROADMAP TOWARDS FULL AUTONOMY

Source: Neckermann Strategic Advisors Assessment, June 2017
FUTURE OF URBAN MOBILITY “AUTONOMY PLUS”

AUTONOMOUS
- Free of human error and physical limitations

CONNECTED
- Real time data shared across entire vehicle fleet; instant learning for AI

ELECTRIC/ FUEL CELL
- Transfer emissions away from urban areas

SHARED
- Ownership obsolete; full capacity utilization; mobility as a service
PREDICTIONS AND CONCLUSIONS
<table>
<thead>
<tr>
<th>By Year</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>MobilEye, (an Intel Company), expects to release new semi-autonomous car technology.
 Audi plans to market vehicles that can autonomously steer, accelerate and brake at lower speeds, such as in traffic jams.
 Google expects to release their autonomous car technology.
 TomTom & Garmin introduce in-dash navigation equal or better than smart phone apps.
 Microsoft expects to release their autonomous car technology.</td>
</tr>
<tr>
<td>2020</td>
<td>Volvo envisages having cars in which passengers would be immune from injuries
 Mercedes-Benz, Audi, Nissan and BMW all expect to sell autonomous cars.</td>
</tr>
<tr>
<td>2022</td>
<td>Large testing of autonomous para-transit and shuttles operating at low speeds in many urban areas.
 Widespread use of autonomous (small) delivery vehicles in major urban areas.
 Successful test of fully autonomous truck-platooning
 Apple expects to release their autonomous car technology.</td>
</tr>
<tr>
<td>2035</td>
<td>Most vehicles will be electrically or fuel cell powered / very few internal combustion-engine powered transportation options available.
 Level 5 Fully Autonomous Vehicles can safely operate in most major cities in North America, Europe, Asia and Middle East. Most vehicles will be shared, not owned, and operated and maintained by future service companies perhaps evolved from today’s automobile dealers. Cities lose revenue stream from violations.</td>
</tr>
<tr>
<td>2040</td>
<td>Most urban travel, in major cities, will be available by Level 5, fully autonomous vehicles.</td>
</tr>
</tbody>
</table>
ON-GOING CHALLENGES / CONCLUSIONS

• US DOT / FHWA has failed to date to provide guidance on the deployment of a standard for wireless V2I communications (DSRC/5G/C-V2I), therefore the signalized infrastructure is not yet ready to receive the Basic Safety Message (BSM) from CAV-equipped vehicles.

• There is currently no significant funding mechanism available to upgrade the >400K US signalized intersection infrastructure to accept the vast amounts of data of CAV-equipped vehicles.

• Very few North American signalized intersections are currently able to pass the SPaT message, real-time R-Y-G timing data, and intersection MAP message back to (Level 4 and Level 5) equipped Autonomous Test Vehicles.

• The current security of C-V2I wireless messages is lacking validation and is open to interference.

• While taking human decision-making out of the mix will enhance motorist and pedestrian safety, it will add to congestion by slowing vehicular movement, and put more vehicles on the road per capita.

• With the transition from internal combustion engines to a totally electric global vehicle fleet in the future, the availability of electrical recharging stations will be a key concern.

• With the availability of Level 5 autonomous vehicles, Mobility-as-a-Service (Maas) will be the future.
Questions / Discussion

Dr. Bill Sowell, Vice President

Eberle Design, Inc.
3510 East Atlanta Avenue
Phoenix, Arizona 85040 USA
Email: wsowell@EDItraffic.com
Web: www.EDItraffic.com
Mobile & What’s App: +1.602.327.0092
CITATIONS & REFERENCES

http://en.wikipedia.org/wiki/Autonomous_car
http://www.cvel.clemson.edu/auto/AuE835_Projects_2011/Vallabhaneni_project.html
www.matronic.de

Info graphics
http://drivesteady.com/how-autonomous-vehicles-work

Other Sources:

The Financial Times
The Economist Intelligence Unit
ITS World Congress proceedings