Super Strong Carbon Fiber Composites
For Use In Bridge Structural Enhancements

Jon Woods, Ph.D., P.E.
Senior Project Manager – Infrastructure Rehabilitation,
Dibble Engineering

jon.woods@dibblecorp.com

14th Arizona Pavements/Materials Conference
2017 Embracing Pavement Technologies
Question...

- Do you know what an FRP is?

- Have you specified, designed or been involved in a project that utilized FRP?
What is an FRP?

- Fiber Reinforced Polymers
- A type of composite
 - wood
 - bones
 - reinforced concrete
 - any material that consists of combining two or more constituents at the macroscopic level to interact as one
Components of FRP

Fiber Reinforcement
(Glass, Carbon, Kevlar, etc.)

Polymer Resin Matrix
(Thermoset or Thermoplastic)

Interphase Coupling Agent
Types of Fibers Typically Used

- **Laminates**
 - Uni-directional
 - Carbon or Glass
 - Precured

- **Woven Fabrics**
 - Uni or bi-directional
 - Carbon or Glass
 - Field cured
Types of Resins

- **Thermosets**
 - Most common for civil/structural applications
 - Requires internal heat source to cure (ie: catalyst)
 - Solid after cured and cannot be reprocessed
 - Lower failure strains

- **Thermoplastics**
 - Most common for mechanical parts, sporting equipment, armor, etc.
 - Requires external heat source to cure (ie: autoclave)
 - Solid after cured but can be reprocessed
 - High failure strains
Facts about FRP compared with conventional materials

- Advantages
 - higher specific strength = σ/ρ
 - higher specific modulus = E/ρ
 - good resistance to electrochemical corrosion
 - versatility
 - good fatigue properties

- Disadvantages
 - fabrication cost
 - brittle failure
 - mechanical characterization
 - poor understanding toward the applications

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Specific gravity</th>
<th>Ultimate tensile strength (GPa)</th>
<th>Tensile modulus (GPa)</th>
<th>Specific tensile strength (GPa)</th>
<th>Specific modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-glass</td>
<td>2.45</td>
<td>3.1</td>
<td>72</td>
<td>1.26</td>
<td>29</td>
</tr>
<tr>
<td>E-glass</td>
<td>2.56</td>
<td>3.6</td>
<td>76</td>
<td>1.40</td>
<td>29</td>
</tr>
<tr>
<td>R-glass</td>
<td>2.58</td>
<td>4.4</td>
<td>85</td>
<td>1.70</td>
<td>33</td>
</tr>
<tr>
<td>S-glass</td>
<td>2.49</td>
<td>4.5</td>
<td>86</td>
<td>1.80</td>
<td>34</td>
</tr>
<tr>
<td>Type I, carbon fibre, high modulus</td>
<td>1.87</td>
<td>2.1</td>
<td>330</td>
<td>1.12</td>
<td>176</td>
</tr>
<tr>
<td>Type II, carbon fibre, high tensile strength</td>
<td>1.76</td>
<td>2.6</td>
<td>235</td>
<td>1.48</td>
<td>133</td>
</tr>
<tr>
<td>Type III, carbon fibre</td>
<td>1.82</td>
<td>2.3</td>
<td>200</td>
<td>1.26</td>
<td>110</td>
</tr>
<tr>
<td>Aramid fibre, Kevlar 29</td>
<td>1.44</td>
<td>2.76</td>
<td>58</td>
<td>1.92</td>
<td>40</td>
</tr>
<tr>
<td>Aramid fibre, Kevlar 49</td>
<td>1.45</td>
<td>2.94</td>
<td>130</td>
<td>2.03</td>
<td>90</td>
</tr>
<tr>
<td>Asbestos</td>
<td>2.5</td>
<td>0.7–1.4</td>
<td>135–170</td>
<td>0.28–0.56</td>
<td>54–68</td>
</tr>
<tr>
<td>Cotton</td>
<td>1.6</td>
<td>0.3–0.7</td>
<td>—</td>
<td>0.19–0.44</td>
<td>—</td>
</tr>
<tr>
<td>Sisal</td>
<td>1.3</td>
<td>0.8</td>
<td>—</td>
<td>0.61</td>
<td>—</td>
</tr>
<tr>
<td>Aluminium (bulk)</td>
<td>2.8</td>
<td>0.5</td>
<td>75</td>
<td>0.18</td>
<td>27</td>
</tr>
<tr>
<td>Steel</td>
<td>7.8</td>
<td>1.0</td>
<td>200</td>
<td>0.13</td>
<td>26</td>
</tr>
<tr>
<td>Titanium DTD 5173</td>
<td>4.5</td>
<td>0.96</td>
<td>110</td>
<td>0.21</td>
<td>25</td>
</tr>
<tr>
<td>Boron</td>
<td>2.62</td>
<td>3.4</td>
<td>344</td>
<td>1.30</td>
<td>130</td>
</tr>
<tr>
<td>Beryllium (bulk)</td>
<td>1.82</td>
<td>1.03</td>
<td>310</td>
<td>0.57</td>
<td>170</td>
</tr>
</tbody>
</table>
Infrastructure and FRP Rehabilitation History

- Infrastructure consists of roads, bridges, buildings, dams, airports, etc.
- Approximately 580,000 inventoried bridges in the USA (FHWA 2010)
 - Structurally Deficient or Functionally Obsolete Bridges
 - 2001 – 30.1%
 - 2009 – 26.5%

- Structurally Deficient Bridge:
 - Does not imply that a bridge is unsafe
 - Characterized by deteriorated conditions of significant bridge elements
 - Potentially reduced load-carrying capacity
 - Typically requires significant maintenance and repair to remain in service (ie: poor deck, superstructure, substructure, or culvert/retaining walls condition, poor waterway adequacy appraisal)

- Functionally Obsolete Bridge:
 - Does not meet current design standards (ie: lane width, poor deck geometry, under-clearances, poor approach roadway alignment, or poor waterway adequacy appraisals)
 - Typically requires widening or replacement to remain in service
Infrastructure and FRP Rehabilitation History

- Structurally Deficient or Functionally Obsolete?
Infrastructure and FRP Rehabilitation History

- Steel was the primary material used for rehabilitation before FRPs

Plate Bonding

External Post-tensioning

Column Jackets
Primary Function of FRP in Civil Engineering Applications

- Retrofitting and Rehabilitation
- Strengthening of existing structures with laminates or wraps
- Bridge deck repair, remediation, new construction
Common FRP Bridge Repair Applications

- Concrete Beams/Girders

Advantages

- Increase flexural capacity
- Increase shear capacity
- Allows existing structure to accommodate greater loading
- Repair damaged or cracked (spalled) concrete beam due to reinforcement corrosion
- Protect structure
- Provide supplemental reinforcement due to corrosion, under-design or code upgrade
Common FRP Bridge Repair Applications

- Column Wrapping
 - Advantages
 - Increase axial capacity
 - Increase bending capacity
 - Increase shear capacity (confinement)
 - Increase ductility
 - Protects existing structure

![Image of column with FRP wrapping]

![Graph showing stress-strain relationship for CFRP, GFRP, and steel]
Common FRP Bridge Repair Applications

- Steel Beams
 - Advantages
 - Increase flexural capacity
 - Increase fatigue life
 - Protect from corrosion
 - Increase stiffness
 - Restore full capacity of cracked member
Common FRP Bridge Repair Applications

- Wood Beams

Advantages
- Increase flexural capacity
- Increase shear capacity
- Increase stiffness and reduce deflection
- Protect wood
Common FRP Bridge Repair Applications

- Bridge Deck Repair and Strengthening

 Advantages

 - Near Surface Mount (NSM) laminates increase flexural strength without adding to existing dead loads
 - Eliminates spalling and cracking caused by reinforcement corroding
Why else should we use FRPs?

Bridge Deck Replacement

Bentley's Bridge, located near Elmira, New York, was rehabilitated in Sept. 1999. Originally, the structure had a steel reinforced concrete deck cast over steel stringers. Due to deterioration of the bridge, load restrictions were posted.

Benefits of Using FRPs for Deck Rehabilitation

- Allow vehicle weight restrictions to be removed
- Eliminate the need for a costly and time-consuming bridge replacement project along a heavily trafficked road.
- Reduce the deck dead load on the structure by 265 tons.
- Prolong the life of steel truss bridge.

http://www.new-technologies.org/ECT/Civil/hcfrp.htm, REPORT FHWA/NY/SR-01/137
New FRP Bridge Deck Repair Applications

- Bridge Deck Repair

 Advantages

 - Composite decks are light weight (one-fifth the weight of reinforced concrete deck)
 - Durable (75+ years) with very low maintenance
 - Ideal for movable bridges and load rated trusses
 - Fast installation without the need for heavy crane equipment
 - Fully pre-fabricated product delivered to site
 - Corrosion resistant
 - Superior strength
Prefabricated Bridge Elements and Systems (PBES) for Accelerated Bridge Construction (ABC)

ADVANTAGES AND BENEFITS

- Built off-site or outside of traffic areas
- Transported to construction site
- Installed rapidly

PBES for ABC Improves:

- Site Constructability
- Total project delivery time
- Material quality/product durability
- Work-zone safety

PBES for ABC Minimizes:

- Utility relocations/right-of-way take
- Impact to existing roadway alignment
- Environmental impacts

PBES for ABC Reduces:

- Traffic Impacts
- Onsite construction time
- Weather-related time delays
- Traffic Impacts
- Onsite construction time
- Weather-related time delays
Columbia River Skywalk: Double Duty Suspension Bridge Trail, British Columbia
- **Loading**
 - Uniform live load of 84 psf (4 kPa)
 - L/500 deflection
 - Concentrated load of 2,248 lb on 1.08 ft² (10 kN on 0.10 m²)
 - Uplift load of 10 psf (0.5 kPa)
 - Wind lateral (shear) load of 253 lb/ft (3.7 kN/m)
 - Rail post moment of 2,430 ft-lb (3.3 KN-m)
 - Minimum Safety Factor of 5

- **Deck dead load weight of 8.4 psf (0.407 kN/m²) – t ≈ 6 inch**
 (Equivalent Concrete weight=75psf, Equivalent Exodermic Deck=55psf)

- **Deck Size**
 - Main span is 738 ft x 13.1 ft (225m x 4m)
 - Back span is 230 ft x 23 ft (70m x 7m)
 - Total area is 14,960 ft² (1,390 m²)
FRP Deck Panels

Composite Sandwich Structure

Facesheet Laminate

Fiberglass shear webs

Fiberglass fabrics wrap around edges

Closed cell foam
Functional Requirements

- Crown with slope of 2%
- Curbs
- Drainage scuppers
- Access hatches for utilities
- Transitions between widths and around towers
- Accommodate girder splices every 5m
- Girder supports are 2.5m on center
- Non-slip overlay

FRP Deck Layout

- 110 panels
- 9 panel types
- Length of 8.17 ft (2.49 m)
- Widths of 23 ft (7m) and 13.1 ft (4m)
Nonslip Wear Surface

Primer/Natural Quartz Layer

Waterproofing Membrane Layer

Topcoat Layer

Broadcast Wearing Layer

Waterproofing Membrane Layer

Primer/Natural Quartz Layer
FRP Bridge Deck Installation
FRP Bridge Deck Installation
FRP Bridge Deck Installation
FRP Bridge Deck Installation
(Finished Structure)
Swing Span Truss Bridge,
Rocks Village Bridge, Haverhill, MA
Swing Span Truss Bridge,
Rocks Village Bridge, Haverhill, MA

- **Bridge Parameters**
 - **Deck Size:**
 - Six spans (809 feet total)
 - **Deck Width:**
 - Spans 1 to 3 = 21.25 feet
 - Spans 4 to 6 = 25.3 feet
 - **Deck Area:**
 - 18,776 SF
 - **Loading:**
 - HS-25 with L/500 Deflection
 - **Superstructure:**
 - Steel Truss with Longitudinal Beams
 - **Guard Rail:**
 - Attached to Deck (Side and Top)
Original Bridge Deck (Before)
(Bituminous Concrete Wearing Surface)
FRP Bridge Deck (After)
(Nonslip Wearing Surface)
FRP Bridge Deck (After)
(Nonslip Wearing Surface)
FRP Bridge Deck Panels

- Depth of 7 inches
- Crown
- Deck Weight = 19psf
- Polymer Concrete Wear Surface
FRP Bridge Deck Installation
FRP Bridge Deck Installation
FRP Bridge Deck Panels
(Deck Connection to Superstructure – Grouted Shear Studs)
FRP Bridge Deck Installation
FRP Bridge Deck Panels
(Deck Connection to Superstructure – Clips)

- Mechanical connection
- Clips to capture any type of beam
- Provides vertical constraint; allows for longitudinal thermal expansion
- Bolted into embedded steel that is drilled and tapped
FRP Bridge Deck Panels
(Panel to Panel Connections)

- Stitch welded steel strips are bonded/bolted to panel ends
FRP Bridge Deck Panels
FRP Bridge Deck Panels
(Expansion Joints at Span Ends)

- Galvanized steel plates
- ½” matches TPO topping thickness
- At end of deck spans for impact resistance
- Attached in the shop
- Includes rail for neoprene seal
FRP Bridge Deck Panels
(Expansion Joints at Span Ends)
FRP Bridge Deck Panels
(Expansion Joint Panels at Swing Span)
FRP Bridge Deck Panels
(Custom Fit – Notch in deck around gussets)
FRP Bridge Deck Panels
(Finished Structure)
Thank you!

Questions?

BEAR DOWN!