

Asphalt Binder Chemical Modification

ICL Advanced Additives November, 2014

Why Modify Asphalt?

• Improve Performance

- Increase the stiffness of asphalt at high temperatures to improve resistance to rutting
- Allow the use of softer asphalts to improve the resistance to low temperature cracking
- More Resistance to Moisture Damage
- Improve Fatigue Resistance (pavement damage from repetitive loads at intermediate temperatures)

Types of Modification

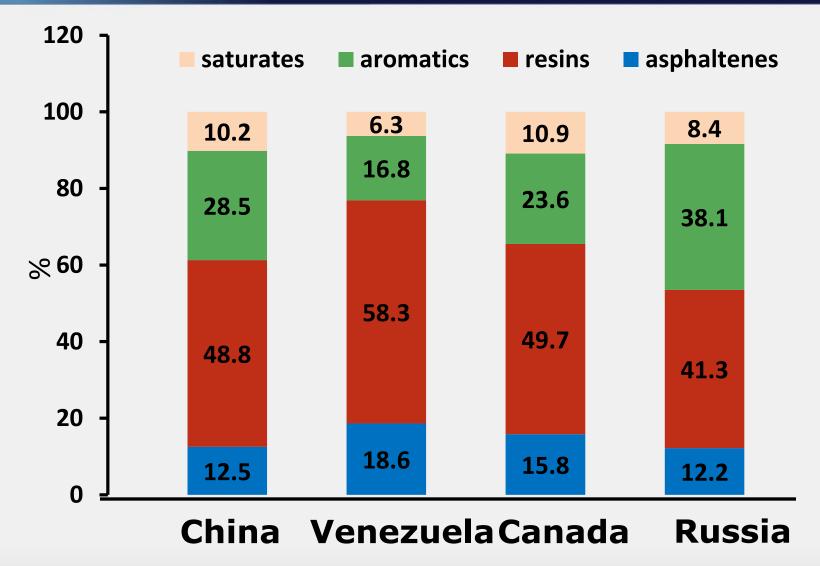
- Modifiers to increase viscosity/stiffness at high temperatures
 - Polymers
 - Crumb Rubber (recycled tire rubber)
 - Chemical Modification
 - Air Blowing/Oxidation
- Modifiers to improve low temperature properties
 High flash point oils
- Additives to improve resistance to moisture damage

 Antistripping Agents

Key Components of Asphalt

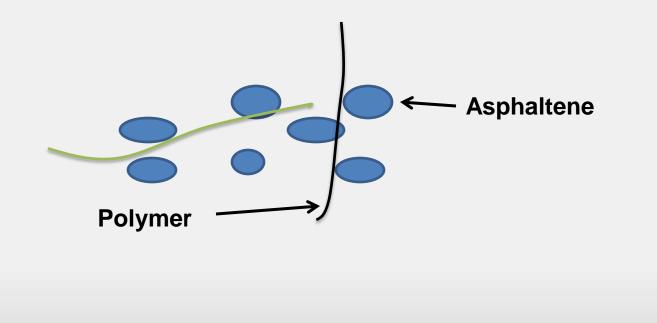
- Asphaltenes (the component which thickens asphalt when fluid)
 - Very large complex materials
 - Typically 10-25% of asphalt.

Maltenes (oily type material- everything but asphaltenes)


- Resins: like asphaltenes but much smaller
- Saturates: basically oils- think of motor oil or light greases
- Polar Aromatics: oils which contain sulfur, oxygen, and/or nitrogen.
 These oils have "sticky" characteristics.

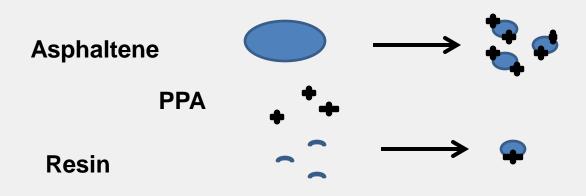
Modifiers Designed to Improve High Temperature Properties Is About Helping the Asphaltenes

Asphalt Composition

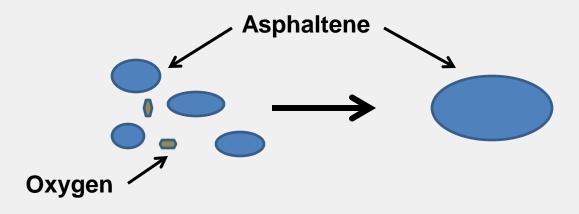


-5-

Modifier Effects: Polymers


- Add large molecules that interact with the asphaltenes
- Asphaltene content does not change

Modifier Effects: Chemical Modification


- Change larger asphaltenes into multiple smaller ones
- Combine larger resins into asphaltenes
- Asphaltene content increases, more smaller asphaltenes

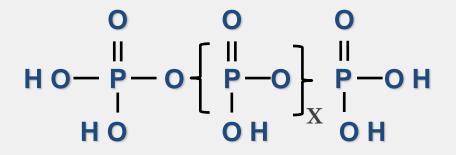
Modifier Effects: Air Blowing

- Combines asphaltenes to make larger asphaltenes
- Asphaltene content goes up, average asphaltene size goes up

Combining modification technologies can provide optimum performance and formulation costs

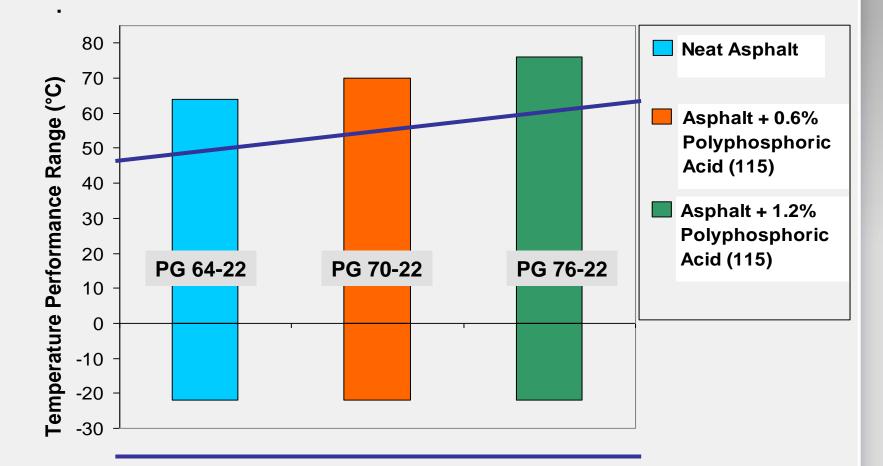
Use of PPA as a Single Modifier for Asphalt Cement

History of PPA in Asphalt Pavement


- 35 years: Tosco-Lion, US Patent 3,751,278 (1973)
- 30+ Patents. Since 2000: 60+ Publications
 - Concerns: Amine, Lime Anti-Strip
- NCAT Test Track 2000/3 18 Test Sections, 10 M ESAL
 - SBS/PPA; Various aggregates; Amine or lime anti-strip
 - Improved rut depth, 1 fatigue crack, no moisture damage
- MnROAD test track 2007 excellent performance to date
 - Excellent performance to date
 - Successful PPA Symposium April 2009

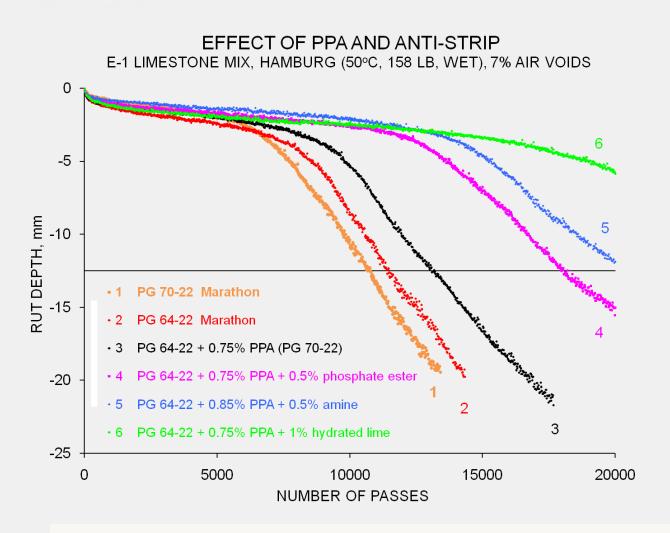
PPA usage: 3.5 to 14% of the asphalt pavement in USA. Estimated 150 to 450 million ton of hot mix over last 7 years.

Polyphosphoric Acid (PPA)



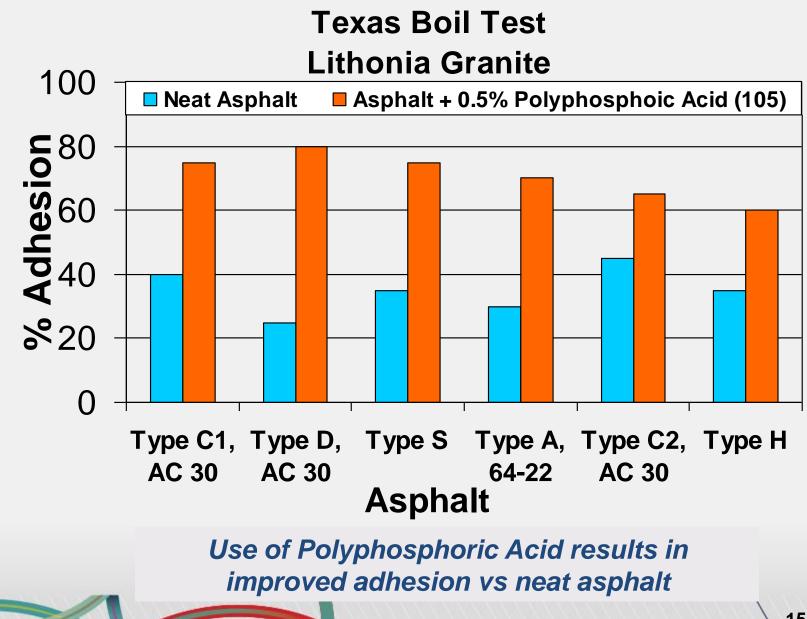
- PPA Chemical Attributes
 - Different from Orthophosphoric acid
 - No Free Water
- 105% and 115% most common
- Increases asphalt stiffness, improves rutting resistance, expands PG range to meet Superpave specs
- Does not affect low-temperature grading
- Modification does NOT involve oxidation and actually slows it down
- Retards binder aging

Performance Grade Rating



Polyphosphoric Acid increases the high-temperature grading with no loss of the low-temperature properties

Moisture Sensitivity: Hamburg



PPA performs well with proper anti-strip. Need to test all mix components.

Adhesion to Aggregates

-15-

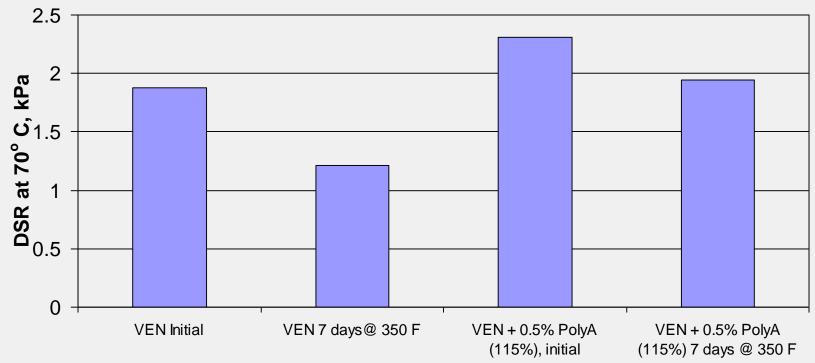
Lab and Field Tests

Neat Binder

Binder + 0.5% PPA 115

MnRoad Test Track: PPA + Lime anti-strip evaluation. Perfect performance after 6-plus years

Hamburg Lab


Specimens

Terminal Storage Stability

Under prolonged high-temperature storage, Polyphosphoric Acid results in an asphalt that maintains its PG rating.

Use of PPA as a Co-modifier with Polymers

Proper Dosage

- Typical Range 0.25 to 1.5%
- Most Common 0.25 to 1.2%
- Affected by:
 - Specification Requirements
 - Reactivity of Base Asphalt
 - Interaction with Local Aggregates

PAV (100°C, 300 psi)			Thin Film (700 μm)		
	Carbonyl Index			Carbonyl Index	
Exposure	PG 64-22	PG 64-22 with 1 % PPA	Exposure	PG 64-22	PG 64-22 with 1 % PPA
0	0	0	0	0	0
1 (RTFOT)	33	25	1 (RTFOT)	0	0
20	208	171	250	125	125
40	305	263	500	167	142
60	433	338	1,000	258	217
80	533	483			

-21-

Polyphosphoric Acid Delivery System (PADS)

Conclusions

- Long history of successful use. Estimated 150 to 500 Million Tons of pavement currently in place where PPA has been used in the last 7 years
- Cost effective- works by making more and smaller asphaltenes
- As stand-alone modifier, high temp. stiffness, no low temp. effect, no negative impact on aging
- Unique properties obtainable when used as a co-modifier with polymers
- Successfully used with hydrated lime and selected amines. Best practice is to test finished products
- PPA modified binders are storage stable
- Continuing research and development

Acknowledgements

- Association of Modified Asphalt Producers (AMAP)
- Bob McGennis, HollyFrontier
- John D'Angelo, D'Angelo Consulting
- Terry Arnold, TFHRC
- Beth Griffin, DuPont