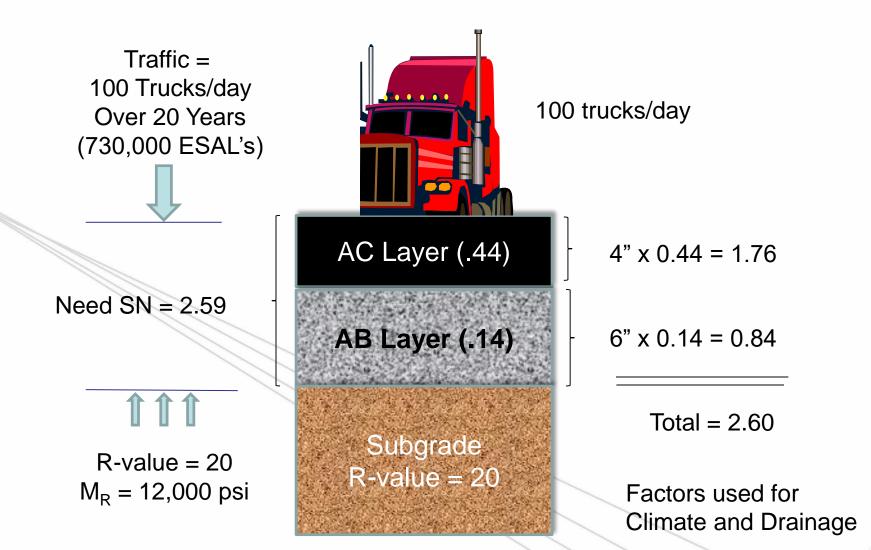

Materials Selection in Pavement Design Flexible Pavements



Pavement Design

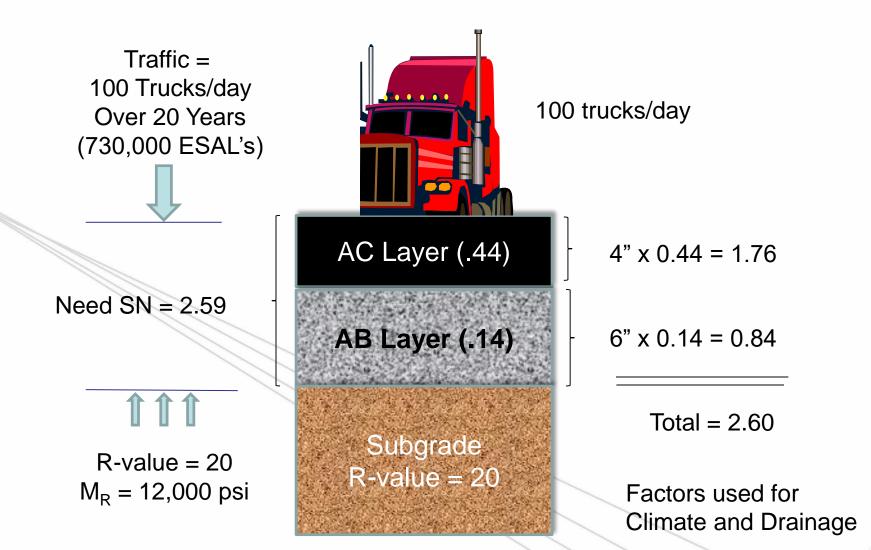
AASHTO Pavement Design Guide (1993)
 AASHTOWare Pavement ME

AASHTO 1993 Design Guide

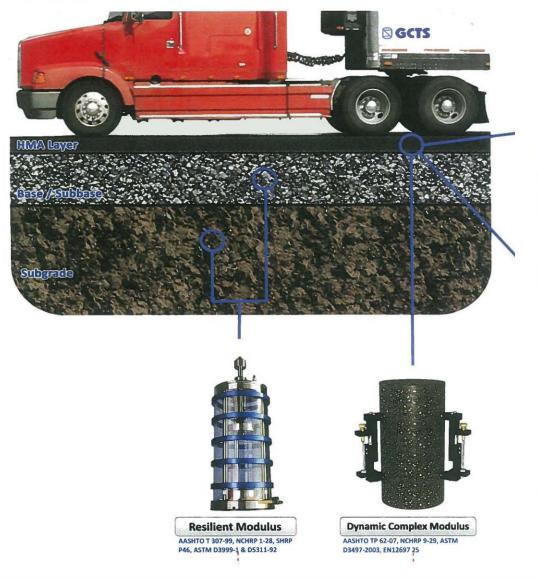
Transverse Cracking

Transverse Cracking

Longitudinal Cracking



Block Cracking



AASHTO 1993 Design Guide

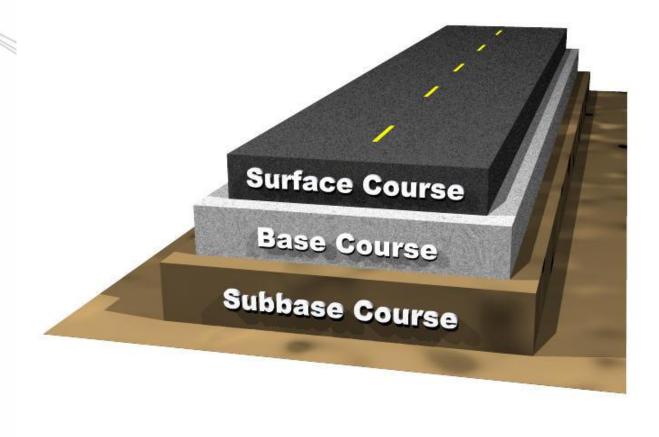
ADVANCED ASPHALT PERFORMANCE TESTS

LUIIII UIVILIII

AASTHOWare Pavement ME Computer Software

Complete Pavement Design

- Structural Capacity (Pavement Thickness)
 - AASHTO Pavement Design Guide (1993)
 - AASHTOWare Pavement ME
 - FAARFIELD (FAA)
 - PCASE (UFC Military Airfields)
- Materials Selection
 - Select the right materials considering the likely failure mechanism
 - Select the most cost effective materials
 - Consider Constructability


ADOT Pavement Design Requirements

Geotechnical Investigation with analysis and design including 3 reports

- Geotechnical Engineering Report
- Pavement Design Summary (thickness)
- Materials Design Report (materials)
 - Selection of all materials specifications with special provisions
 - Quantities and cost estimates

Pavement Materials Selection What Mix is Right for My Project?

Sustainable Pavement Materials

Sustainable

- Lasts for it's design life
- Base layers resist fatigue or other damage
- Replace or rehabilitate surface layers periodically (say every 15 years)
- Premium Products to extend rehabilitation cycles (20+ years?)

Not Sustainable

- Early failure
- Replace entire pavement periodically

Mix Design Considerations

Three Things Pavement Designers Need to Specify about the Mix Design

- Mix Design Type
- Aggregate Properties
- Asphalt Cement (Binder) Selection

Mix Design Type

Marshall Mix Design

- 50 Blow
- 75 Blow
- Gradation spec's tend to be finer

Mix Design Type

Gyratory Mix Design

- N_{Des} = 60
- N_{Des} = 75
- N_{Des} = 100
- Gradation Spec's tend to be more coarse

Aggregate Selection

- Nominal Maximum Aggregate Size
 - ½ inch
 - ¾ inch
- Gradation
 - Dense graded
 - Open graded
 - Gap graded

Aggregate Selection

- Angularity
 - Fractured Faces (coarse agg)
 - Fine Aggregate Angularity (fine agg)

Aggregate with 100% Angular Faces Aggregate with Some Non-Angular Faces

Asphalt Binder Selection

- PG Binder Grading
- PG XX-XX (ex: PG 70-10)
 - First number high temperature
 - Second number low temperature
- Example:
 - High Temp = 68.0 °C
 - Low Temp = -4.7 °C
 - PG 70-10 meets both
- Bump PG for high or slow traffic

Modified Binders

Asphalt Rubber Binder (20% tire rubber)
Polymer Modified Asphalt (2-3% polymer)
Tire Rubber Modified Asphalt - Terminal Blend (1-3% polymer, 5 - 15% tire rubber)

Mix Design Selection

Three Things to Consider

What is the Controlling Failure mode

- Traffic
- Environment
- Cost
- Constructability

Load Related Distress

Need a Mix that is resistant to:

- Fatigue Alligator Cracking
- Rutting

Original profile

Bleeding

lerracon

Mix Design Selection

- High Traffic Mixes
 - Freeways
 - Heavy Duty Parking Lots (Distr. Centers)

llerracon

Arterial Roadways/Highways

Example Mix Design Selection for High Traffic

- Arterial Roadway Metro Phoenix Area
- Traffic 12 M ESAL's
- 6"AC / 10"AB
- Avg. Speed 40 mph (Intersection 10 mph)

Example Mix Design Selection for High Traffic

- Marshall (50 or 75 Blow?)
 - Gyratory (Gyrations at $N_{des} = 60, 75, or 100$?)
- Max Aggregate size
 - Surface Mix $-\frac{1}{2}$ "
 - Interm. and Base Mix $\frac{3}{4}$ "

Asphalt Binder Selection for High Traffic - Phoenix Binder Selection (Use LTPPBind software) High Temperature - 68.0 °C - Light traffic - 70.4 °C - Medium traffic –76.0 °C - High traffic with bump - 80.4 °C - Slow moving high traffic with bump

Low Temperature

- -4.7 °C - All traffic & speed

Asphalt Binder Selection for High Traffic Example Binder Selection (LTPPBind software)

- Light Traffic, PG 70-10
- Medium Traffic, PG 76-10
 - Heavy Traffic, PG 76-10
 - Heavy Slow Traffic, PG 82-10

- **Binder Choices**
- PG 64-16
- PG 70-10
- PG 76-16
- PG 76-22P
- PG 76-22TR

Mix Design Selection High Traffic - Summary

- Surface, MAG ¹/₂" Gyratory mix (N_{des} = 100)
- Base, MAG ³/₄" Gyratory mix (N_{des} = 100)
- PG 76-22P or PG 76-22TR Binder
- MAG Specifications
 - High fractured faces (85, 1 or more)
 - High fine aggregate angularity (45% min)
 - Natural Sand (15% max)

Mix Design Selection High Traffic - Summary

Remember to Consider Lift Thickness

- ¹/₂" Gyratory mix (2" to 3")
- ³/₄" Gyratory mix (3" to 4")
- 2 ¹/₂" (1/2" mix) & 3 ¹/₂" (3/4" mix) = 6"
- Verify asphalt thickness can be achieved within these limits or consider adding another mix.

Traffic and Aging lerracon

Failure will be caused by

Mix Design Selection

- Medium Traffic Mixes
 - Light Arterials
 - Heavy Collector Roadways
 - Commercial Parking Lots with Trucks

Example Mix Design Selection for Medium Traffic

- Heavy Collector Roadway Metro Phoenix Area
- Traffic 3 M ESAL's
- 5"AC / 6" AB
- Avg Speed 30 mph (Intersection 10 mph)

Example Mix Design Selection for Medium Traffic

- Mix Type Selection (Marshall or Gyratory?)
 - Marshall 50 or <u>75 Blow</u>?
 - Gyratory Gyrations at N_{des} = 60, 75, or <u>100</u>?
- Max Aggregate size
 - Surface Mix $-\frac{1}{2}$ "
 - Intermediate and Base Mix $\frac{3}{4}$ "

Asphalt Binder Selection for Medium Traffic Phoenix

- Binder Selection (Use LTPPBind software)
 - High Temperature
 - 68.0 °C Light traffic
 - 70.4 °C Medium traffic
 - 76.0 °C Heavy traffic with bump
 - 80.4 °C Slow moving heavy traffic with bump
- Low Temperature

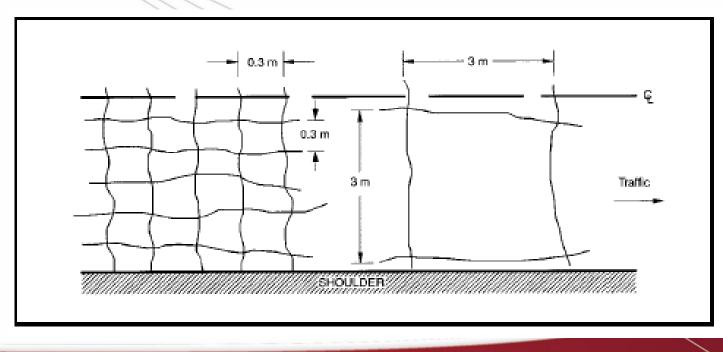
-4.7 °C - All traffic & speed

Asphalt Binder Selection for Medium Traffic Example

- Binder Selection (Use LTPPBind software)
- MediumTraffic PG 76-16
- Binder Choices:
 - PG 64-16
 - PG 70-10
 - PG 76-16
 - PG 76-22P
 - PG 76-22TR

Mix Design Selection Medium Traffic - Summary

- Surface, MAG ¹/₂" Marshall mix (75 blows)
 - Base, MAG ³/₄" Marshall mix (75 blows)
- PG 76-16 Binder
- MAG Specifications for Agg properties
- Lift Thicknesses
 - $-\frac{1}{2}$ " Marshall mix (1¹/₂" to 3")
 - 3/4" Marshall mix (21/2" to 4")
- 2" (1/2" mix) & 3" (3/4" mix) = 5"



Low Volume Roadways - Failure Caused by Environmental Effects

Non Load Related Distress (Environmental Aging)

- Transverse and Longitudinal Cracking
- Block Cracking
- Weathering

Example Mix Design Selection for Low Traffic

- Residential Roadway Metro Phoenix Area
- Traffic 15,000 ESAL's
- Average Speed 25 mph

llerracon

Example Mix Design Selection for Low Traffic

- Mix Type Selection (Marshall or Gyratory?)
 - Marshall <u>50</u> or 75 Blow?
 - Gyratory Gyrations at N_{des} = 60, 75, or 100?
- Max Aggregate size
 - Surface Mix 3/8"
 - <u>Surface Mix 1/2"</u>
 - Intermediate and Base Mix $\frac{3}{4}$ "

Asphalt Binder Selection for Low Traffic Phoenix

Binder Selection (Use LTPPBind software)

- High Temperature
 - 68.0 °C Light traffic
 - 70.4 °C Medium traffic
 - 76.0 °C Heavy traffic with bump
 - 80.4 °C Slow moving heavy traffic with bump
- Low Temperature

- -4.7 °C - All traffic & speed

Asphalt Binder Selection for Medium Traffic Example

Binder Selection (Use LTPPBind software)

- Light Traffic PG 70-10
- Binder Choices:
 - PG 64-16
 - PG 70-10
 - PG 76-16
 - PG 76-22P

– PG 76-22TR

Mix Design Selection Low Traffic

- Surface, MAG ¹/₂"
- No Base Mix Needed
- Marshall mix (50 blows)
- Binder: PG 70-10
- Lift Thicknesses
 - 1/2" Marshall mix (11/2" to 3")
- 1 ½" (1/2" mix) & 1 ½" (1/2" mix) = 3"

Questions?

