Subgrade: It's Just Dirt. Isn't it?

Daniel N. Fréchette, PhD, PE

Senior Associate Geotechnical Engineer,

Amec Foster Wheeler Environment & Infrastructure, Phoenix, AZ

Daniel.Frechette@amecfw.com

amec foster wheeler

Outline of Presentation

- Introduction
- Pavement Components
- Specifications
- Factors that Influence Subgrade Performance
- Mitigation Strategies for Poor Subgrade
- Case Study I-17 Widening Project
- Summary

Introduction

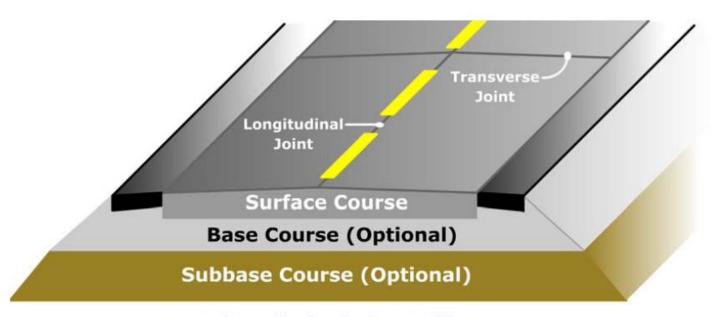
- What is Subgrade?
 - MAG –

Subgrade: The supporting structures on which the pavement and its special undercourses rest.

ADOT –

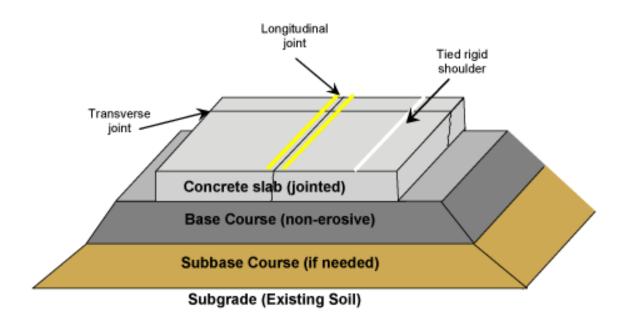
Subgrade:

The roadbed materials beneath the pavement structure.

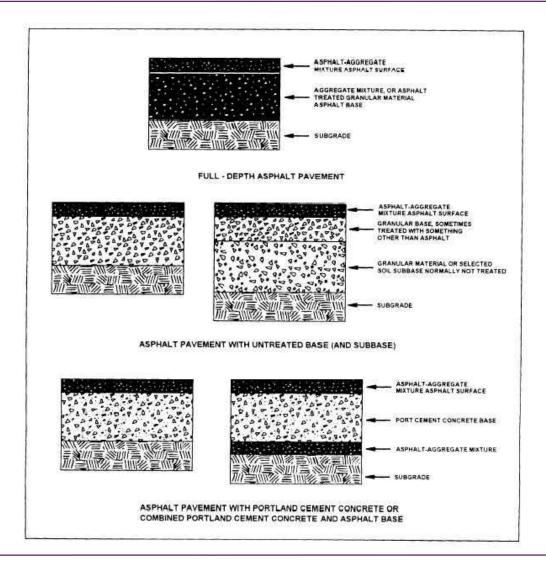

FHWA –

Subgrade — The top surface of a roadbed upon which the pavement structure, shoulders, and curbs are constructed.

DNF – ?



Subgrade (Existing Soil)



Pavement Components

Summary of Pavement Components

Manufactured/Produced Components

- Portland Cement Concrete
- Asphaltic Concrete
- Base Course

Naturally Occurring

Subgrade

Construction Specifications – Portland Cement Concrete

SECTION 725

PORTLAND CEMENT CONCRETE

725.1 GENERAL:

Portland cement concrete shall be composed of cementitious materials, fine and coarse aggregates, water, and, if specified or allowed, certain chemical admixtures and additives.

TABLE 725-1 CONCRETE CLASSES - MINIMUM REQUIREMENTS					
AA	600	4000			
A	520	3000			
В	470	2500			
C	420	2000			

Construction Specifications – Asphaltic Concrete

SECTION 710

500-000	TABLE 710-2			
	E/FINE AGGREGATE			
Characteristics	Test Method	Low Traffic	High Traf	ffic
Fractured Faces, % (Coarse Aggregate Only)	Arizona 212 75, 1 or more		85, 1 or more 80, 2 or more	
Uncompacted Voids, % Min.	AASHTO T-304, Method A	42	() (a	_
Flat & Elongated Pieces, % 5:1 Ratio	ASTM D4791	10.0 Max.	10.0	80
Sand Equivalent, %	AASHTO T-176	50 Min.	50	2.2
Plasticity Index	AASHTO T-90	Non-plastic	Non-	
L.A. Abrasion, %Loss	AASHTO T-96	9 max. @ 100 Rev. 40 max. @ 500 Rev.	9 max. @ 40 max. @	274
Combined Bulk Specific Gravity	AI MS-2/SP-2	2.35 - 2.85	2.35	1,
Combined Water Absorption	AI MS-2/SP-2	0-2.5%	0 -	

SECTION 710

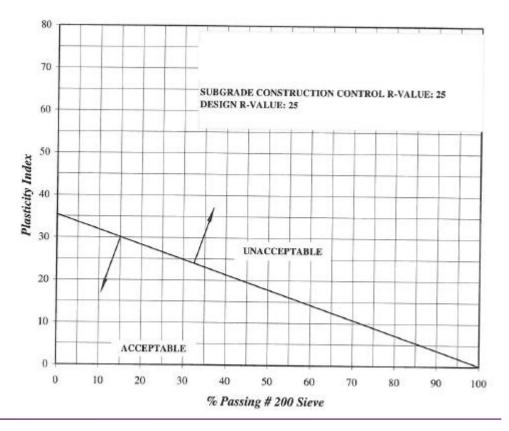
	TAI	BLE 710-3	i .		
MAR	SHALL MI	X DESIGN	CRITERIA		
	Requirements			Designated Test	
Criteria	3/8" Mix	1/2" Mix	3/4" Mix	Base Mix	Method
1. Voids in Mineral Aggregate: %, min	15.0	14.0	13.0	12.0	AI MS-2
2. Effective Voids: %, Range	4.0±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	AI MS-2
3. Absorbed asphalt: %, Range*	0-1.0	0-1.0	0-1.0	0-1.0	AI MS-2
4. Dust to Eff. Asphalt Ratio, Range **	0.6-1.4	0.6-1.4	0.6-1.4	0.6-1.4	AI MS-2
5. Tensile Strength Ratio: % Min.	65	65	65	65	ASTM D 4867
6. Dry Tensile Strength: psi, Min.	100	100	100	100	ASTM D 4867
7. Stability: pounds, Minimum	2,000	2,500	2,500	3,000	AASHTO T-24
8. Flow: 0.01-inch, Range	8-16	8-16	8-16	8-16	AASHTO T-24
9. Mineral Aggregate Grading Limits			- 1		AASHTO T-2
	77	1	Percent Passing	with Admix	
Sieve Size	3/8 inch Mix		1/2 inch Mix	3/4 inch Mix	Base Mix
1-1/4 inch			1/	7	100
l inch			- X., A	100	90-100
3/4 inch			100	90 - 100	85-95
1/2 inch	100		85-100		
3/8 inch	90-100		62 - 85	62 - 77	57-72
No. 8	45-60		40 - 50	35 - 47	33-43
No. 40	10-22		10 - 20	10 - 20	9-18
No. 200	2.0 - 10.0		2.0 - 10.0	2.0 - 8.0	1.0 - 7.0

Construction Specifications – Aggregate Base

SECTION 702

	Table	702-1		
	Sieve A	Analysis		
		SHTO T-27, T-11		
Sieve Size	Accumulative Percentage Passing Sieve, by Weight			
Selection resident	Select 1	Aggregate Base Course		
	Type A	Type B		
3 in.	100	(Carrier	1000	
1-1/2 in.	7.50	100	100	
l in.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 - 100	
No. 4	30 - 75	30 - 70	38 - 65	
No. 8	20 - 60	20 - 60	25 - 60	
No. 30	10 - 40	10 - 40	10 - 40	
No. 200	0 - 12	0 - 12	3 – 12	
Test M		ty Index Method A, T-90, T146 Me	fhod A	
Maximum allowable value	5	5	5	
Test Method AI		ice, One Face ght of the Material Retains	ed on a #4 Sieve	
Minimum required value	50	50	50	
		n by the Los Angeles Abro 96, Percent Loss by Weigl		
Maximum allowable value at 100 revolutions	10	10	10	
Maximum allowable value at 500 revolutions	40	40	40	

702.2.2: When tested for acceptance, Base material that does not meet Table <u>702-1</u> properties for gradation or PI may be approved at the Engineer's discretion if the R-Value is at least 70, when determined by test method AASHTO T-190 (see Table <u>310-1</u>).


- End of Section -

Construction Specifications – Subgrade

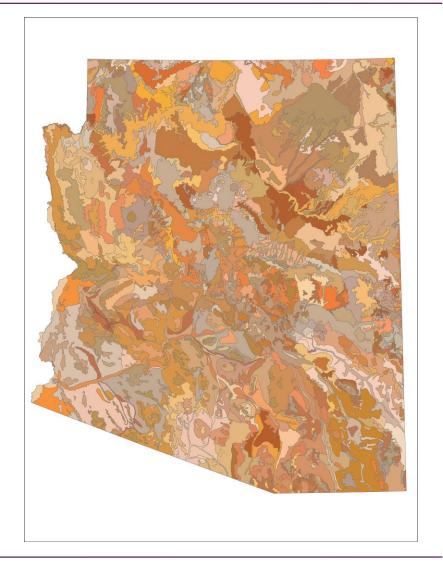
The material from this stockpile may be suitable for embankment. Any portion of the stockpile material that is placed within three feet of the finished subgrade shall meet the following requirements:

The Plasticity Index (PI) (AASHTO T90) and the percent passing the No. 200 Sieve (Minus 200) (Arizona Test Method 201) when used in the equation below, shall give a value of X that does not exceed 100.

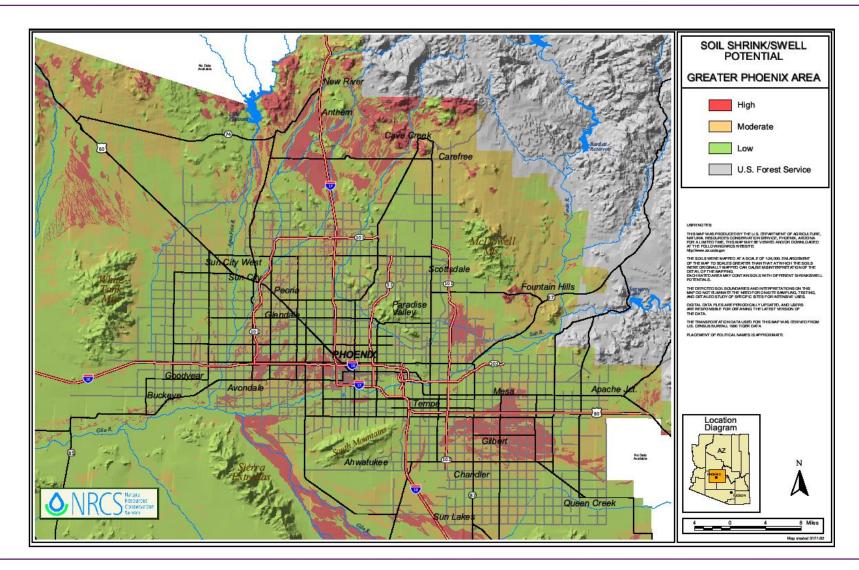
Factors Influencing Subgrade Performance

Soil Type

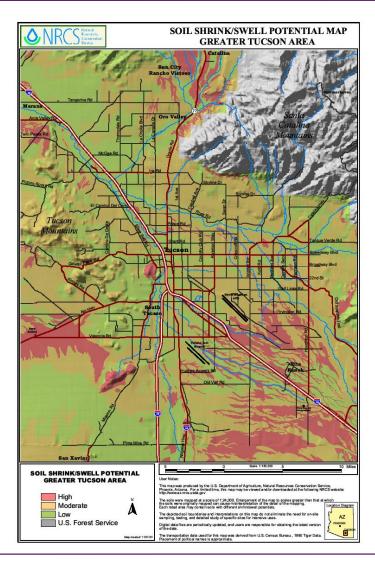
- Plasticity
- Percent fines (% < No. 200)
- Swell potential
- Collapse potential


Environmental Effects/ Climatic Conditions

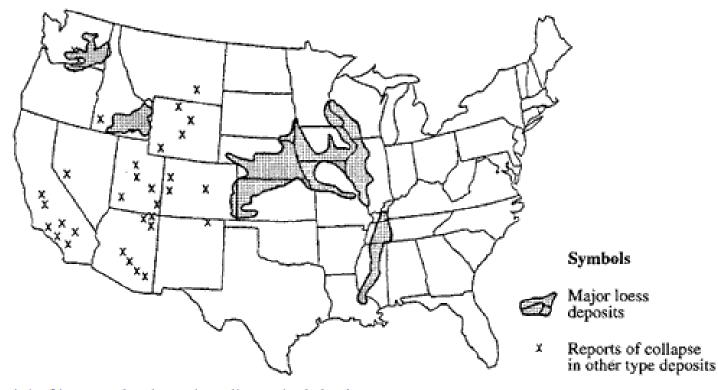
- Elevation
- Temperature
- Precipitation/Moisture
- Drainage


Soil Type

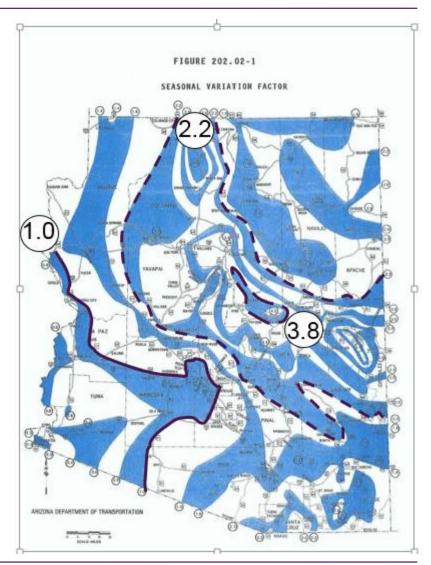
Soils Map of Arizona (USDA-NRCS)



Swell Potential Map – Phoenix Area

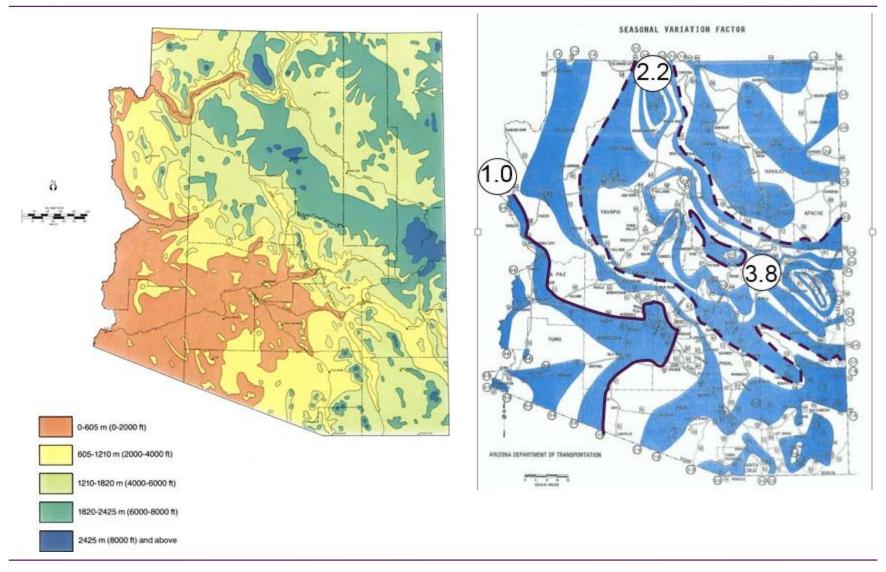


Swell Potential Map – Tucson Area

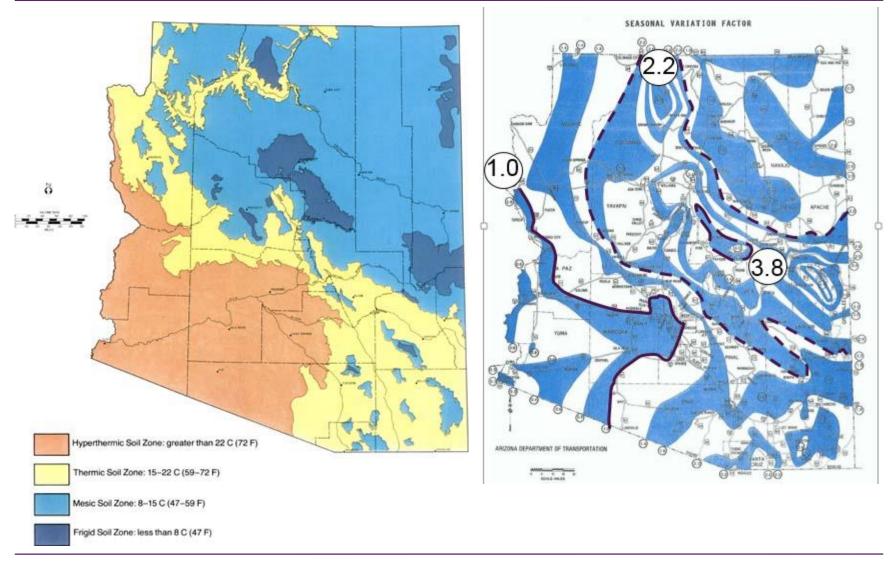

Collapsing Soils consist of loose, dry, low-density material – i.e., undercompacted – that shrinks in volume when wetted (hydrocompaction), and/or when loaded with a great weight, such as a building or street. These types of soils are particularly common in the semi-arid southwestern U.S. where wind and ephemeral streams deposit loose, unconsolidated, and undersaturated (re.: dry) sediments that are prone to sudden collapse.

Environmental Effects/ Climatic Conditions

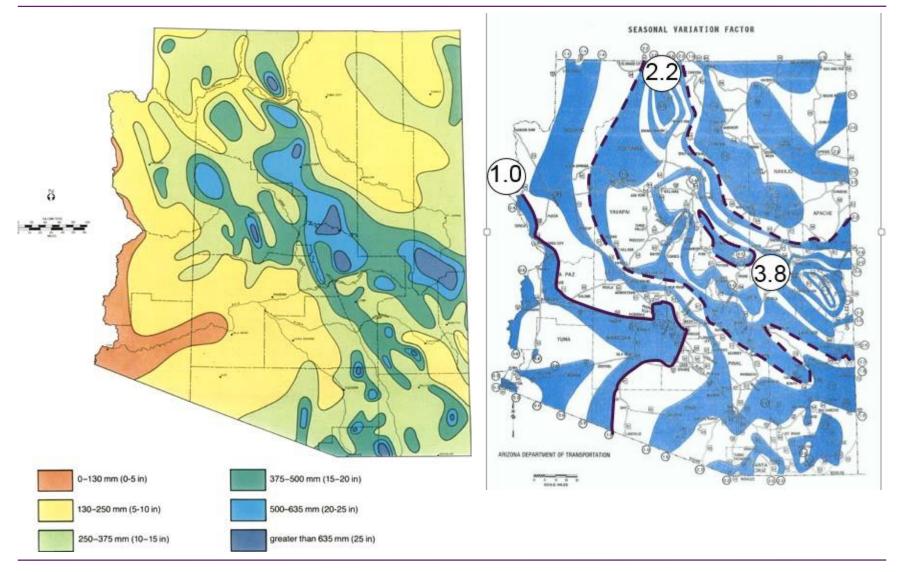
- Elevation
- Temperature
- Precipitation


Seasonal Variation Factor

March 22, 2017

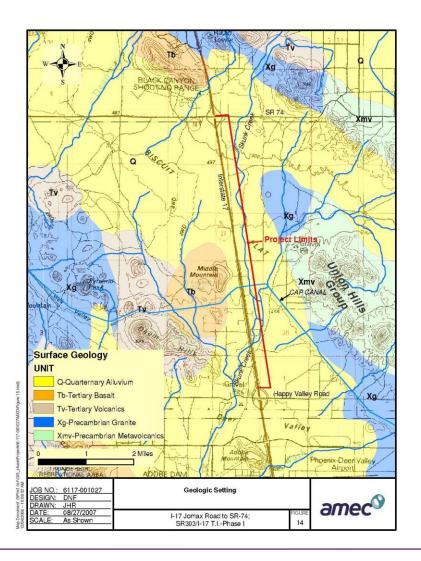


Seasonal Variation Factor vs Elevation



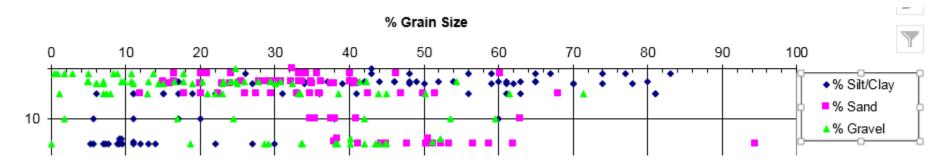
Seasonal Variation Factor vs Temperature

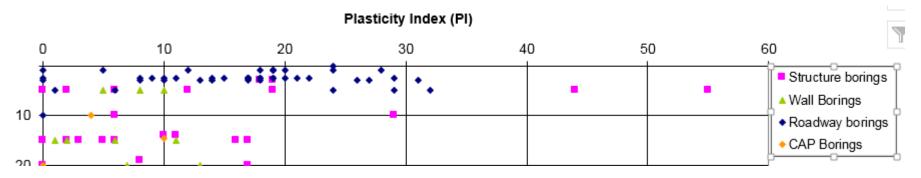
Seasonal Variation Factor vs Precipitation


Mitigation Strategies for Poor Subgrade

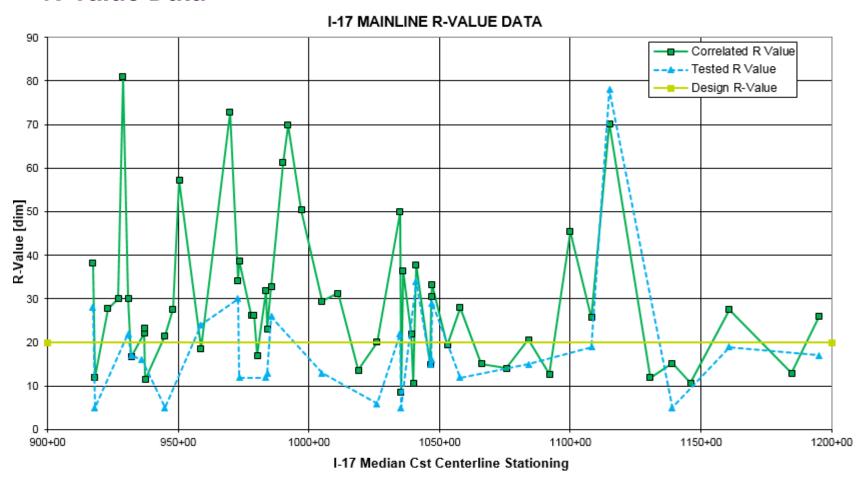
- Over-Excavation and Replace
- Over-Excavation and Recompaction
- Geogrid with Geotextile
- Lime or Cement Treated
- Alternative Engineering Solutions

- Project Location
- Project Soils
- Subgrade Characterization (R-Value Evaluation)
- Alternatives Evaluated
- Final Design


Swell Potential Map – Phoenix Area


Case Study – I-17 Widening Project Soils

- Subgrade Criteria
 - Percent Passing No. 200 Sieve



Plasticity Index (PI)

R-Value Data

Case Study – I-17 Widening Alternatives Evaluated

Alternatives Evaluated

- Over-Excavation and Replace
 - Viable alternative
- Over-Excavation and Recompaction
 - Not viable, soils not collapsible
- Geogrid with Geotextile
 - Strain compatibility concerns
- Lime or Cement Treated
 - ADOT did not want to pursue
- Alternative Engineering Solutions
 - Evaluate impact of lower R-value on pavement thickness

Case Study – I-17 Widening Alternatives Evaluated

Alternatives Evaluated

- Over-Excavation and Replace
 - Viable alternative
- Over-Excavation and Recompaction
 - Not viable, soils not collapsible
- Geogrid with Geotextile
 - Strain compatibility concerns
- Lime or Cement Treated
 - ADOT did not want to pursue
- Alternative Engineering Solutions
 - Evaluate impact of lower R-value on pavement thickness

Summary

What is Subgrade?

MAG –

Subgrade: The supporting structures on which the pavement and its special undercourses rest.

ADOT –

Subgrade:

The roadbed materials beneath the pavement structure.

FHWA –

Subgrade — The top surface of a roadbed upon which the pavement structure, shoulders, and curbs are constructed.

- DNF
 - Subgrade: Foundation for the pavement
 - Largest variability, Know the least about

