Arizona Pavements and Materials Conference *November 2017*

Feasibility of using Recycled Asphalt Pavements (RAP) in Phoenix

Gonzalo Arredondo Graduate Research Assistant Arizona State University

Rob and Melani Walton Sustainability Solutions Initiatives Arizona State University Shane Underwood, PhD Kamil Kaloush, PhD

SN Resource Innovation and Solutions Network

CoP Sustainability Program

- Phase I: Preliminary Study
- Phase II: Field Study

Sustainability Benefits:

- Accordin
 - 50 m
 - More
 - Reduoinant
 of ag
 - \$2.6
 - Average
 20.4^e
- Accordir
 - 12% c
 - Binde
 - Aggre
 - \$3.9 r 2009

llion tons

09) to

-2016)

since

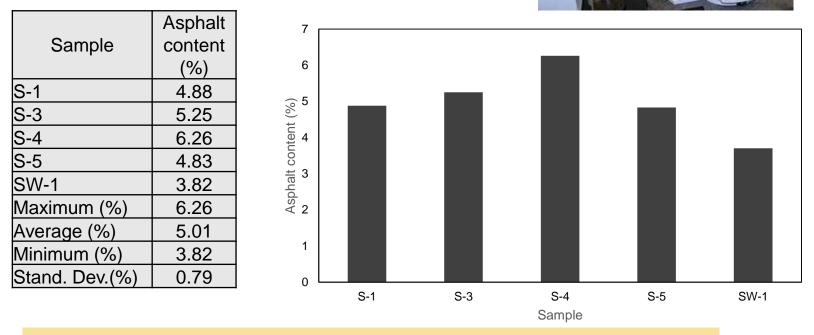
1. Survey

Δαορογ	Asphalt	Concrete	Unbound	Other	
Agency	Surface	Non-Surface	Base	Other	
City of Phoenix			X1	Х	
City of Tucson		Х	Х	Х	
Arizona Department of Transportation (ADOT)	Х	Х	Х	Х	
Maricopa Association of Governments (MAG)	Х	Х	Х	Х	
Pima Association of Governments (PAG)	Х	Х	Х		
Maricopa County Dept. of Transportation (MCDOT)		Х	X ²	Х	
Pima County Dept. of Transportation (PCDOT)	Х	Х	Х	Х	
East Valley Asphalt Committee (EVAC)		Х		Х	
Apache Junction			Х	Х	
Mesa		Х	Х	Х	
Gilbert					
Queen Creek			Х	Х	
Las Vegas (Nevada)	Х	Х	Х	Х	
Nevada Department of Transportation (NDOT)	Х	Х	Х	Х	
Texas Department of Transportation (TxDOT)	Х	Х	Х	Х	
New Mexico Department of Transportation (NMDOT)	х	x	Х	х	
California Department of Transportation (Caltrans)	Х	Х	Х	Х	

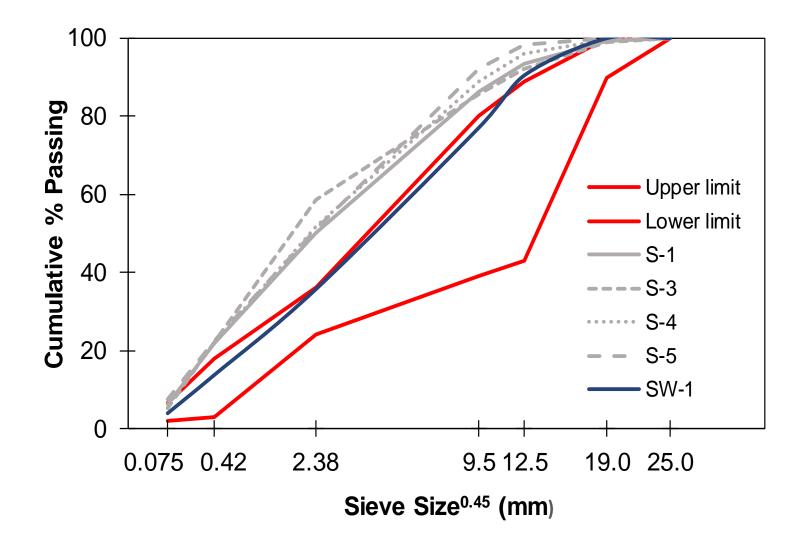
¹ Only with the City of Phoenix Lab approval.

² Only for minor collectors or local roads. Arterial streets not exceed 20% and 30% for collectors.

2. RAP Stockpile Sampling


RAP from Southwest Asphalt Plant – El Mirage

- On the approved City of Phoenix list
- Processed RAP material
- Possible use on future paving projects for the City


Asphalt Content

NCHRP: Asphalt content maximum Std. Dev. = 0.5%

Extraction: AASHTO T164/ASTM D2172 Quantitative Extraction of Asphalt Binder from Hot Mix Asphalt (HMA)(trichloroethylene, n-propyl bromide or methylene chloride)

Recovery: ASTM D5404 Recovery of Asphalt from Solution Using the Rotary Evaporator

Extracted aggregates gradations

Processed RAP shows coarser gradation

Statistical Measures

Extracted aggregates gradation

(Del Rio Landfill and Southwest Asphalt)

Sieve size	Average cumulative % passing	Maximum % Passing	Minimum % Passing	Standard Deviation (%)	CV (%)	Standard Deviation (%)	CV (%)
1 in	100	100	100	0.0	0.0	0.0	0.0
3/4 in.	100	100	99	0.4	0.4	0.4	0.4
1/2 in.	94	98	91	3.1	3.3	2.7	2.9
3/8 in.	86	92	77	5.6	6.5	3.0	3.4
#4	66	72	51	8.3	12.7	2.4	3.4
#8	49	58	36	8.4	16.9	3.8	7.3
#30	26	29	18	4.6	17.9	1.0	3.5
#40	20	22	14	3.8	18.5	0.3	1.3
#50	16	18	11	3.1	19.3	0.8	4.8
#100	10	12	7	2.0	21.0	1.2	11.9
#200	6	7	4	1.3	23.2	1.0	16.0

NCHRP: Passing #8 maximum Std. Dev. = 5.0% Passing #200 maximum Std. Dev. = 1.5%

- Landfill unprocessed RAP shows less variability compared with including processed RAP
- Reasonable variability between samples

Landfill only

Extracted Binder Characterization

• Very stiff recovered binders

Binder tests:

- RTFO
- PAV
- DSR
- BBR

Performance Grade of Extracted Binders

Sample	Extracted PG Grade
	Standard
Stockpile 1	124 + 26
Stockpile 3	112 + 14
Stockpile 4	118 + 14
Stockpile 5	130 + 26
Stockpile SW1	112 + 14

In Phoenix, a PG 70-10 is a typical virgin binder.

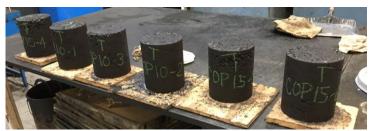
Standard Specification for Superpave Volumetric Mix Design, AASHTO M 323-13

• **Table 2**—Binder Selection Guidelines for Reclaimed Asphalt Pavement (RAP) Mixtures

Recommended Virgin Asphalt Binder Grade	RAP %
No change in binder selection	<15
Select virgin binder one grade softer than normal (e.g., select a PG 58-28 if a PG 64-22 would normally be used	15 to 25
Follow recommendations from blending charts	>25

In consensus with COP it was decided to use 10% and 15% RAP contents considering PG 70-10 typical virgin binder.

Predicted Performance	Stockpile	Extracted binder	RAP %	Blended binder
Grade change of virgin PG 70 - 10			10	PG 70 – 4
	S-1	128.6 + 20.4	15	PG 76 – 4
binder by			20	PG 76 + 2
blending with			10	PG 70 – 4
the extracted binders	S-3	115.7 + 10.2	15	PG 76 – 4
DITUEIS			20	PG 76 – 4
(based on		119.0 + 8.20	10	PG 70 – 4
NCHRP approach)	S-4		15	PG 76 – 4
			20	PG 76 – 4
			10	PG 76 – 4
	S-5	130.8 + 22.3	15	PG 76 – 4
			20	PG 82 + 2
			10	PG 70 – 4
	SW1	112.5 + 11.3	15	PG 76 – 4
			20	PG 76 – 4

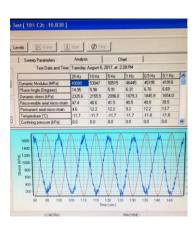

3. Mix Design Procedure

- Guidelines for Mix Design:
 - Gyratory mix design criteria of CoP
 - Superpave mix design method
 - 3/4" Base course mix
 - Low traffic (0.3 to less than 3 million of 20-year ESALs)
 - Three mixes: Control (0% RAP), 10% RAP and 15% RAP
 - Virgin binder PG 70-10
 - RAP incorporation based on national and local practices.
 - Sample fabrication (at least 3 replicates for each test)

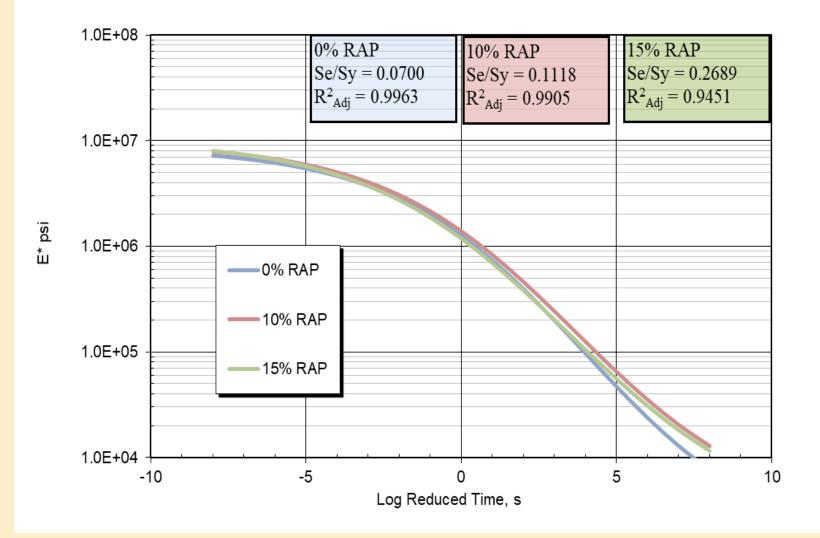
Mix Design Volumetric Information

Mix Property	COP Criteria 3/4" Mix	0%	10%	15%	Specifications
Asphalt Binder (%)		5.02	5.17	5.37	
Air Voids (%)	4.0+/-0.2	4.00	4.00	4.00	
VMA (%)	13 min.	14.76	14.05	13.45	Pass
VFA (%)	65 - 78	72.59	71.63	70.33	Pass
Absorbed Asphalt (%)	0 - 1.0	0.40	0.32	0.30	Pass
Dust Proportion	0.6 - 1.4	1.03	0.99	0.94	Pass
%Gmm @ Nini = 7	less than 90.5	89.42	89.33	89.34	Pass
<u>%Gmm @ Nmax = 115</u>	less than 98	97.01	96.94	96.94	Pass
Eff. Asphalt content (%)		4.64	4.87	5.08	
P0.075		4.80	4.80	4.80	
Total Binder (%)		5.02	5.17	5.37	(by weight of total mix)
Added Virgin Binder (%)		5.02	4.80	4.82	(by weight of total mix)
Contributed RAP Binder (%)		0.00	0.37	0.55	(by weight of total mix)
Gmm		2.458	2.452	2.445	
Gsb		2.629	2.634	2.635	

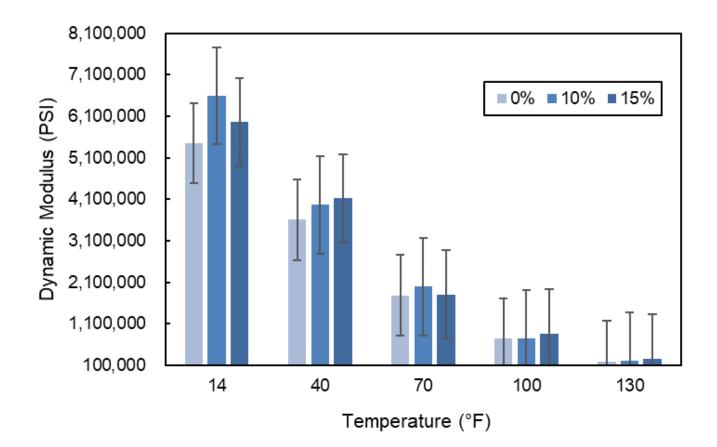
4. Laboratory Testing and Evaluation


- Performance evaluation:
 - Dynamic Modulus (E*): Stiffness of the material. Fundamental property for pavement design (temperature and frequency).

• Flow Number (FN): to evaluate the resistance to rutting of the asphalt mix.


Tensile Strength Ratio (TSR): to measure the degree of susceptibility to moisture damage.
 [+ cracking potential]

Dynamic modulus (E*)



- AASHTO TP 62
- Primary material parameter for MEPDG
- Stiffness
- Sinusoidal repetitive load
- Reduced temperature set:
- -10, 4.4, 21.1, 37.8 and 54.4 °C.
- For 6 frequencies: 25, 10, 5, 1, 0.5 and 0.1 Hz.
- 3 replicates for each RAP content

Dynamic modulus (E*)

Dynamic modulus (E*) for different temperatures and 10 Hz frequency

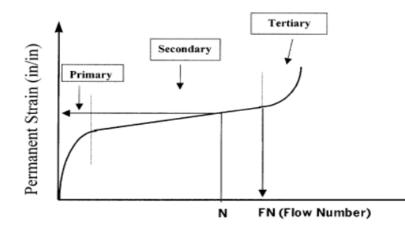
ANOVA and t-Test Analysis on Dynamic Modulus

Comparing three mixes:

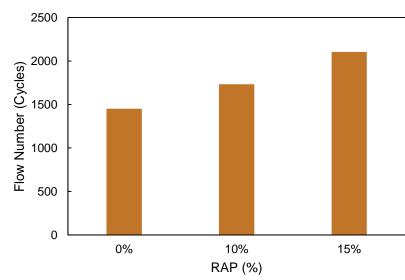
Frequency		Temperatures (°C)				
(Hz)	14	40	70	100	130	
25	NS	NS	NS	NS	NS	
10	NS	NS	NS	NS	NS	
5	NS	NS	NS	NS	NS	
1	NS	NS	NS	NS	NS	
0.5	NS	NS	NS	NS	NS	
0.1	NS	NS	NS	NS	NS	

NS= Not Statistically Significant S= Statistically Significant

- 0%, 10% and 15% RAP mixes are not statistically different.
- Dynamic modulus of 15% RAP is slightly higher for 100°F (37.8°C).


Comparing two mixes at a time:

Frequency	845-		Temp	erature	es (°C)	
(Hz)	Mix	14	40	70	100	130
25	0% to 10%	CNR	CNR	CNR	CNR	CNR
	0% to 15%	CNR	CNR	CNR	CNR	CNR
	10% to 15%	CNR	CNR	CNR	CNR	CNR
	0% to 10%	CNR	CNR	CNR	CNR	CNR
10	0% to 15%	CNR	CNR	CNR	CNR	CNR
	10% to 15%	CNR	CNR	CNR	CNR	CNR
	0% to 10%	CNR	CNR	CNR	CNR	CNR
5	0% to 15%	CNR	CNR	CNR	CNR	CNR
	10% to 15%	CNR	CNR	CNR	CNR	CNR
	0% to 10%	CNR	CNR	CNR	CNR	CNR
1	0% to 15%	CNR	CNR	CNR	R	CNR
	10% to 15%	CNR	CNR	R	CNR	CNR
	0% to 10%	CNR	CNR	CNR	CNR	CNR
0.5	0% to 15%	CNR	CNR	CNR	R	CNR
	10% to 15%	CNR	CNR	CNR	CNR	CNR
	0% to 10%	CNR	CNR	CNR	CNR	CNR
0.1	0% to 15%	CNR	CNR	CNR	R	CNR
	10% to 15%	CNR	CNR	CNR	CNR	CNR
R= Reject H ₀ C	NR= Cannot re	ject H _o				


Flow Number (FN)

- AASHTO TP 79
- A measure of permanent deformation in HMA mixes, correlates with rutting potential
- Haversine pulse load
- Describes the cycle number at which tertiary flow begins
- Testing temperature: 122°F (50°C)
- 3 replicates for each RAP content

Flow Number (FN)

Rodezno's rutting prediction model:

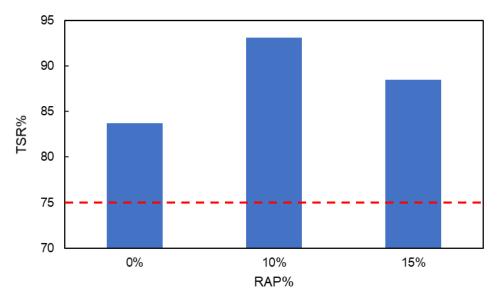
$R = 0.0038*FN^{-0.242}*ESALs^{0.485}*h^{-1.021}$

			Pavement	Rutting	
Mixture	FN	ESALs	Thickness (in)	(in)	(mm)
0%	1452	3,000,000	3	0.29	7.5
10%	1732	3,000,000	3	0.28	7.2
15%	2106	3,000,000	3	0.27	6.8

Mixture	Flow Number (Cycles)		α = 0.05			t-Test
Mixture	Average	CV(%)	ANOVA	t-Test one-tail	t-Test two-tail	comparing:
0%	1452	39.7		CNR	CNR	0% to 10%
10%	1732	21.3	NS	CNR	CNR	0% to 15%
15%	2106	37.8		CNR	CNR	10% to 15%
ANOVA: NS= Not Statistically Significant S= Statistically Significant t-TEST: R= Reject H_0 CNR= Cannot reject H_0						

- Slight increase in performance as RAP percent increases.
- No statistical difference between the three mixes.

Tensile Strength Ratio (TSR)


- ASTM D4867
- Ratio of tensile strengths of conditioned to dry specimens
- COP specifies a minimum of 75% TSR
- Conditioned (wet and freeze-thaw cycle)
- Testing temperature: 77°F (25°C)
- Tensile splitting test
- 6 replicates for each RAP content

Tensile Strength Ratio (TSR)

			gth (kPa	α = 0.05			t-Test
Condition	Mixture	Average	CV(%)	ANOVA	t-Test one-tail	t-Test two-tail	comparing:
	0%	1504	4.2		CNR	CNR	0% to 10%
Dry	10%	1439	5.2	NS	CNR	CNR	0% to 15%
	15%	1613	6.4		CNR	CNR	10% to 15%
	0%	1260	2.8		CNR	CNR	0% to 10%
Wet Freeze-Thaw	10%	1339	6.2	NS	CNR	CNR	0% to 15%
Treeze-Thaw	15%	1427	9.0		CNR	CNR	10% to 15%
ANOVA: NS= Not Statistically Significant S= Statistically Significant t-TEST: R= Reject H ₀ CNR= Cannot reject H ₀							

- Slight improvement in TSR for RAP mixes compared to control mix.
- No statistical difference between the three mixes.

Pavement ME Design Modeling: Rutting and Fatigue cracking

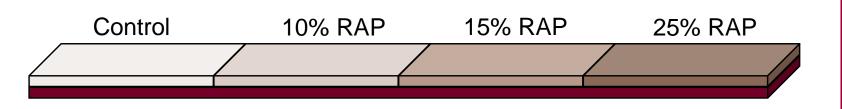
• Pavement design comparison:

Road type	AADT (veh.)	Speed (mph)	Thickness (in)
Major	10000	45	5.0
Local	1000	25	2.0

• Tested measured Dynamic Modulus (E*):

Road	Rutting (in)		
type	0%	10%	15%
Major	0.482	0.474	0.466
Local	0.247	0.242	0.242

Road Fatigue cracking			ng (%)
type	0%	10%	15%
Major	29	29	29
Local	18	17	18


- RAP percentage increase shows slightly less rutting depth.
- Fatigue is similar for all three mixes.
- The predicted pavement performance of all three mixes is similar.

Concluding Remarks

- Mixes with RAP show higher stiffness than the control mix with higher dynamic moduli.
- The increase in RAP percentage show improvement on the pavement resistance to rutting.
- Fatigue cracking (<u>predicted</u>) not affected by low RAP contents.
- RAP mixtures show higher TSR values meaning less susceptible to moisture damage.
- No <u>statistical significant difference</u> in properties measured between the control, 10% and 15% RAP mixtures
- The use of low RAP contents (10% and 15%) has no negative effect on the material properties or pavement performance.

Phase II

Construct 3 to 4 pavement sections of conventional and RAP mixtures with different contents. Sample mixtures to conduct testing program and compare results to conventional mixes. Conduct field performance evaluation.

Thank you!

gzarredo@asu.edu

29