

Performance Engineered Concrete Mixtures

Thomas Van Dam, Ph.D., P.E. NCE

2017 Arizona Pavement/Materials Conference November 15-16 in Tempe, AZ

Engineering & Environmental Services

• Development Team

- Dr. Peter Taylor, Director CP Tech Center
- Cecil Jones, Diversified Engineering Services
- Dr. Jason Weiss, Oregon State University
- Dr. Tyler Ley, Oklahoma State University
- Dr. Tom VanDam, NCE
- Mike Praul, FHWA
- Tom Cackler, Woodland Consulting
- Industry Participants/Reviewers
 - Champion States & ACPA Chapter Execs
 - ACPA National
 - PCA
 - NRMCA

AASHTO PP84-17: Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures

- Provisional standard practice that continues to evolve
- Team is now working under a five-year pooled fund study to refine and validate
- The goal is to strengthen the link between specified material properties and performance

PEM - The Path to Implementation

- Improved understanding of concrete performance
 - Structural and durability considerations
- Specify critical properties and test for them
 - Essential to link specified properties to performance
- Obtain mixtures that meet specifications
 - Mixture design
 - Acceptance

4

Prescriptive Specifications

- Historically used to accommodate a fixed amount of knowledge and a low skilled workforce
 - DOTs specify means and method dictated by experience
 - Each successive generation adds more experience (and specific directions) to the specifications
- Negative: Builds on a 90-year old platform; opportunities to innovate are limited
 - Like driving through the rearview mirror

Performance-Based Specifications

- Take advantage of the knowledge gained from recent research and experience
 - DOTs specify criteria and tests methods linked to desired performance
 - Can form the basis for pay factors
 - Promotes innovative ideas and solutions
- Negative: Knowledge base needs to grow
 - It takes time for everyone to become comfortable
 - Requires greater technical sophistication throughout the workforce

PEM Concept

- Provide a standard practice based on tests linked to performance
 - Tests completed during mixture design or at placement or both
- Allow DOTs to take what they like from the document and make it their own
- DOTs are not expected to give up what they already know is important to them

What is in PP-84?

- Standard practice with test methods and recommended limits
 - There are both prescriptive and performance approaches
 - A commentary is included that gives the technical background behind the tests and limits
- This is a tool to help improve concrete pavement performance
- The document is not designed to be used without modifying for local practice and experience

Collaboration. Commitment. Confidence.™

Thinks of it as a Buffet From Which You Choose What You Like

CAUTION:

RECLAIMED WATER,

DO NOT DRINK

PEM: Approach to Testing

- Require the things that matter
 - Strength
 - Warping and shri
 - Freeze-thaw resis
 - Chemical deicer r
 - Transport propert
 - Aggregate stability
 - Workability

Engineering & Environmental Services

Strength

Test method

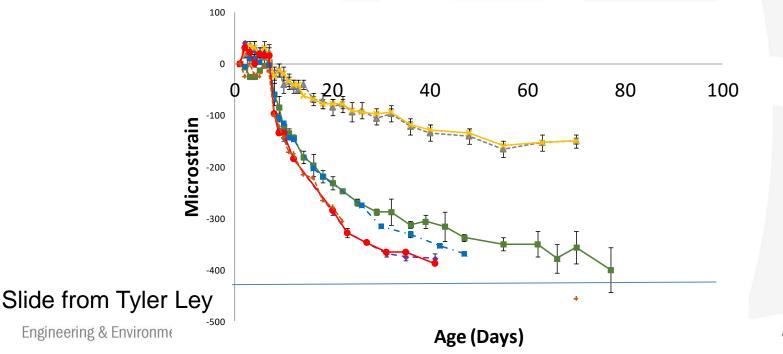
Value Approval? Acceptance? Flexural Strength AASHTO T 97 4.1 MPa 600 psi Yes Yes Compressive Strength AASHTO T 22 24 MPa 3500 psi Yes Yes

Engineering & Environmental Services

Axial Drying Shrinkage

Test method Value Time Approval? Acceptance? Volume of paste Axial shrinkage 1 ASTM C157 < 25% < 420 με 28 days Yes No No

Axial shrinkage 2 ASTM C157 < 360, 420, 480 με 91 days Yes No

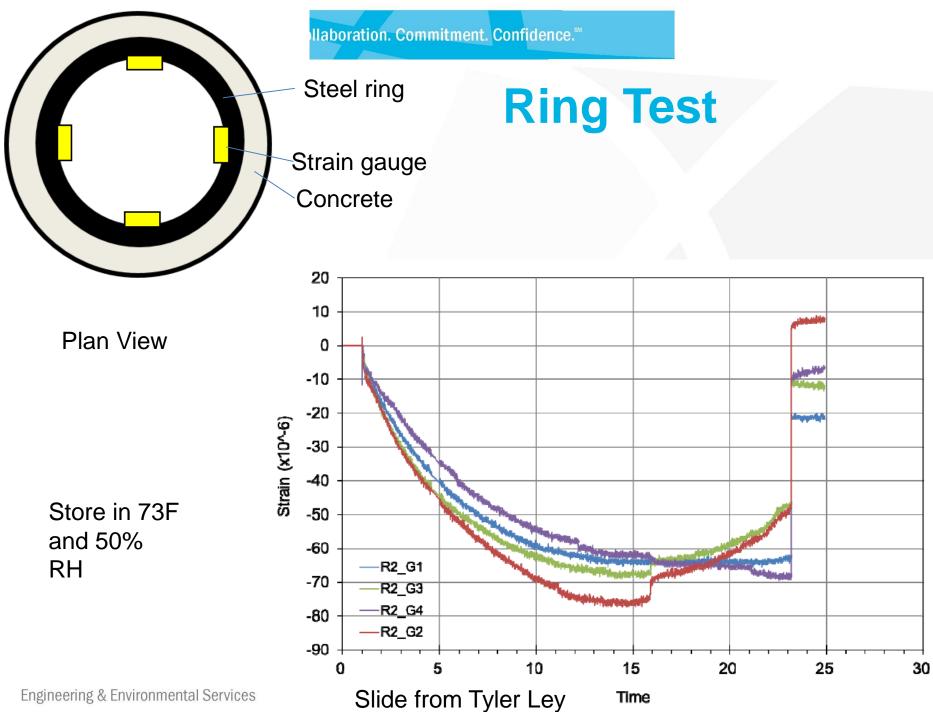


Engineering & Environmental Services

ASTM C157

- Cure samples for 28 days in fog room
- Demold and place in drying room (50% RH and 73F)
- Measure their length change over time

www.ncenet.com


Collaboration. Commitment. Confidence.™

Drying Shrinkage Cracking

	Ring Test	Dual Ring	Modeling
Test method	AASHTO T 334	AASHTO TP363	-
Value	crack free	σ < 60% f'r	5, 20, 50% cracking prob
Time	180 days	7 days	
Approval?	Yes	Yes	Yes
Acceptance?	No	No	No

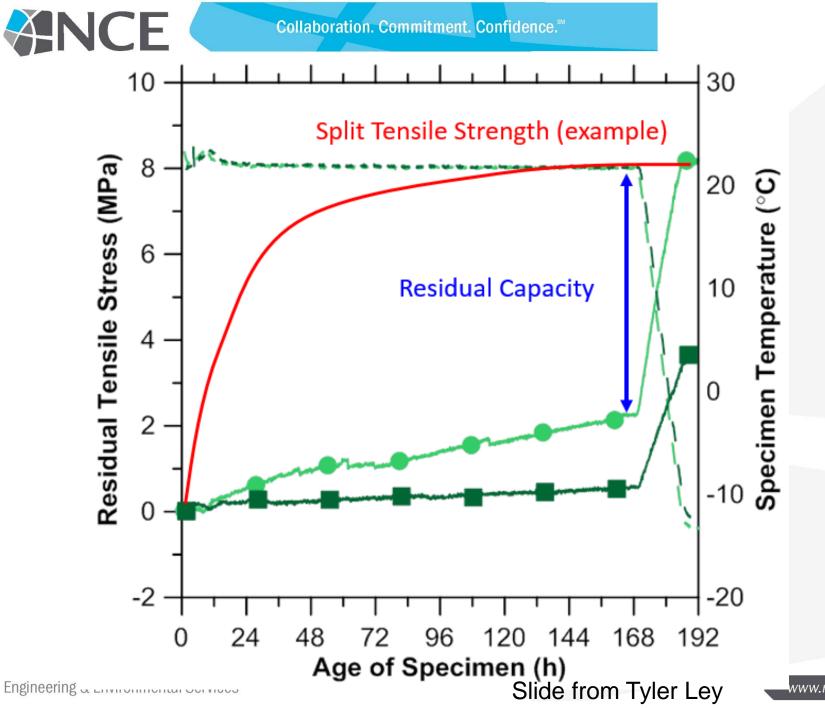
Engineering & Environmental Services

laboration. Commitment. Confidence.[®]

Invar rings

Strain gauge

Plan View


Pres

Dual Ring Test

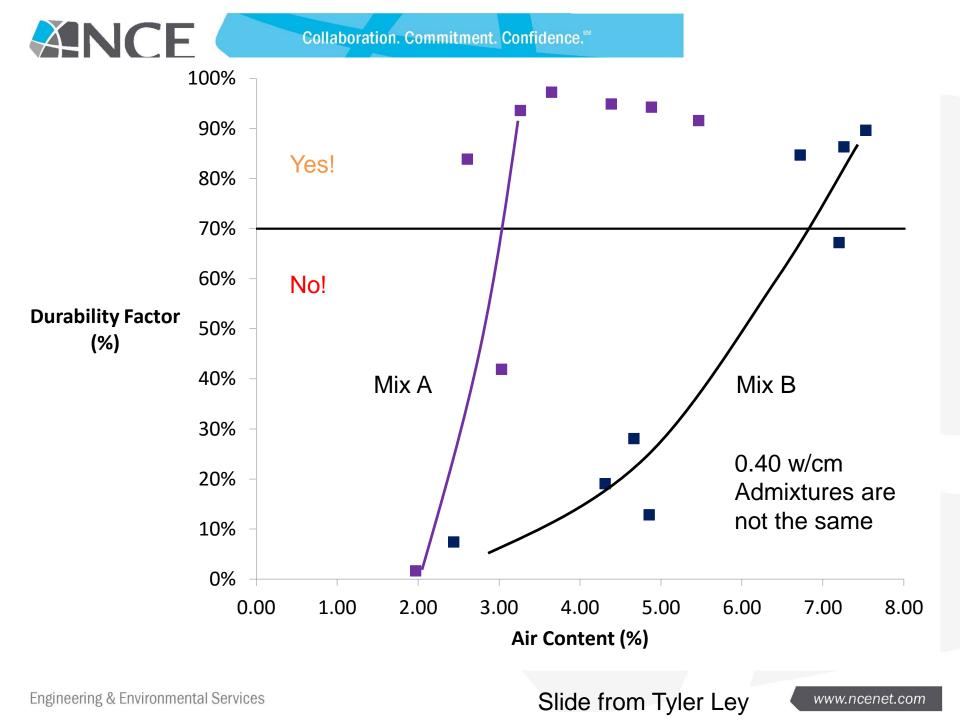
This ring can measure both expansion and contraction.

As the concrete shrinks the ring can measure the strains that occur.

We force a temperature gradient in the concrete and make it crack and compare that to 60% of the split tension capacity after 7 days.

www.ncenet.com

Collaboration. Commitment. Confidence.™

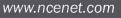

Freeze Thaw durability

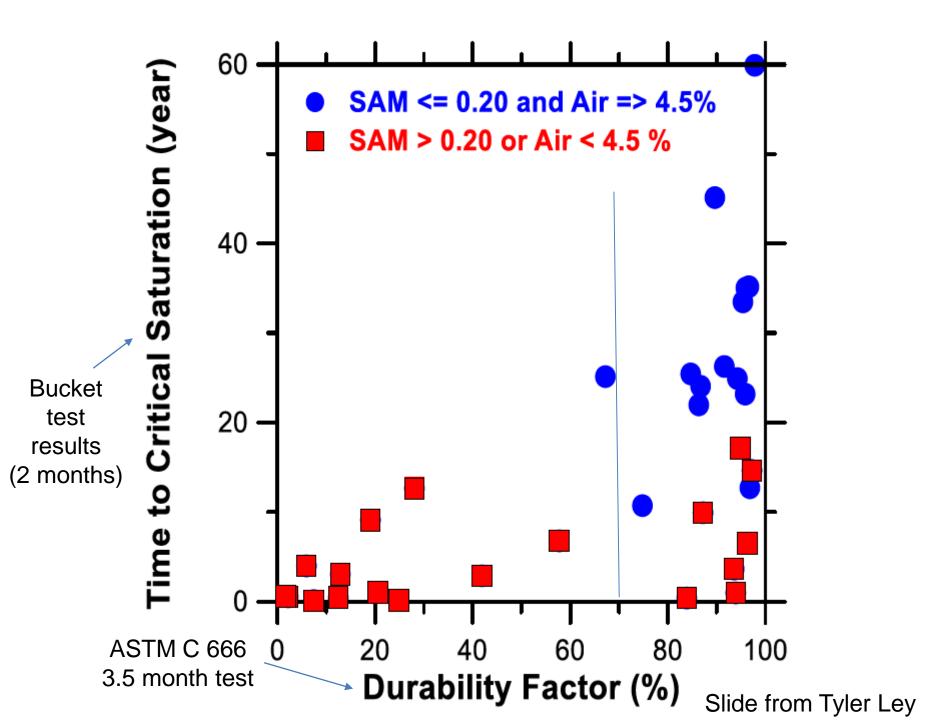
	w/cm
Test method	-
Value	< 0.45
Approval?	Yes
Acceptance?	Yes

Air void volume	Air void system	Time to Critical Saturation
AASHTO T 152, T196, TP 118 5 to 8%	AASHTO TP 118 ≥4% Air SAM≤0.20	- 30 Yrs
Yes	Yes	Yes
Yes	Yes	No

Slide from Tyler Ley

Engineering & Environmental Services

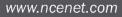



The Bucket Test

- Cast concrete and keep sealed for 14 days
- Measure the cylinder mass after demolding
- Place three concrete cylinders in lime water
- Measure their mass at 5 days
- Measure their mass again every 10 days until they are 60 days old
- Oven dry cylinder and take mass
- Vacuum saturate cylinder and take mass
- Calculate the time to critical degree of saturation

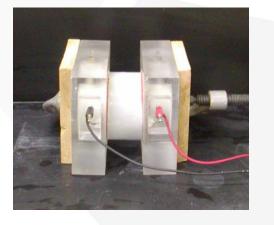
Engineering & Environmental Services

Deicer Salts


Are calcium or magnesium chloride deicer salts used?

Approach Value Approval? Acceptance?

use SCMs	use sealer	AASHTO T 365
> 35%	-	< 0.15g CaOXY/g paste
Yes	Yes	Yes
Yes	Yes	No



Transport Properties

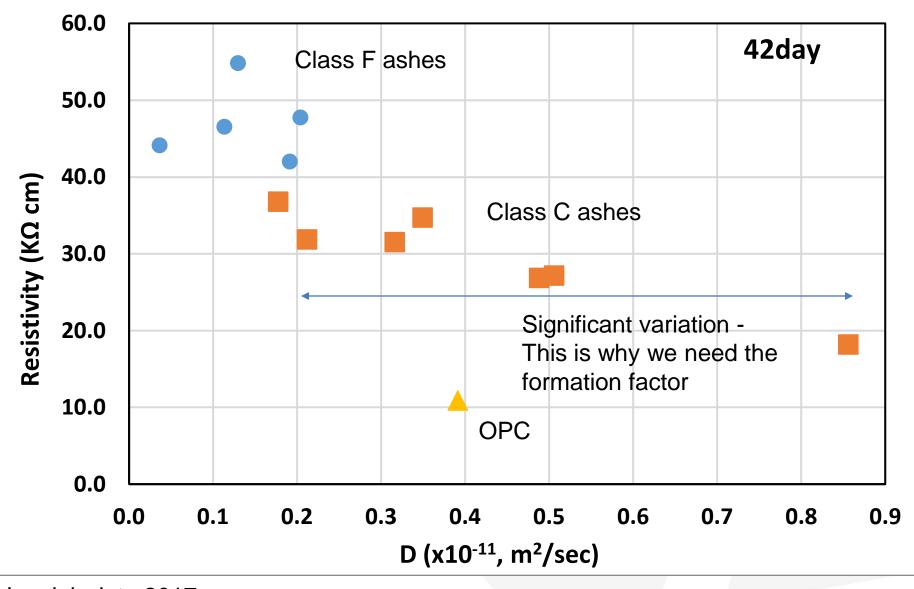
Test method
Value
Approval?
Acceptance?

w/cm -0.45 Yes Yes RCPT Value AASHTO T 277 < 2000 Yes Yes Formation Factor AASHTO T 358 > 500 Yes Yes

Slide from Tyler Ley

www.ncenet.com

The Formation Factor


- It is a true measurement of how hard it is for solution to move through concrete
 - Reflects volume and connectivity of pores
- Can derive it from RCPT or resistivity test results
 - Must used standardized specimen geometry and condition (temperature and moisture)
 - Must correct for pore solution resistivity

Pore Solution Resistivity

- Three approaches are provided to determine pore solution resistivity
 - Assume a value (this is what we currently do for RCPT)
- Calculate a value based on the cement and SCMs using on-line calculator
 - Based on mill certificates or XRF results
- Squeeze out the pore solution and measure it

Ley lab data 2017 Engineering & Environmental Services

Diffusion Coefficient

27

Aggregate Stability

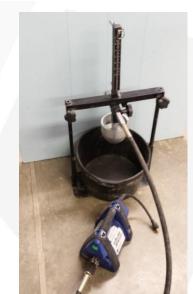
Test method Approval? Acceptance? D Cracking AASHTO T 161 ASTM C 1646 Yes

No

Alkali Aggregate Reactivity AASHTO PP 65 Yes

No

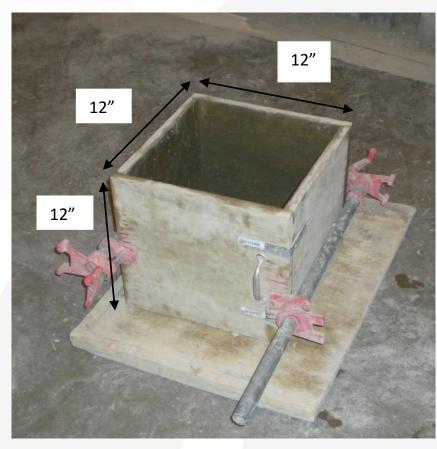
Constructability



Criteria Approval?

Box Test <6.25 mm, < 30% Surf. Void Yes

V-Kelly 15-30 mm per root seconds Yes

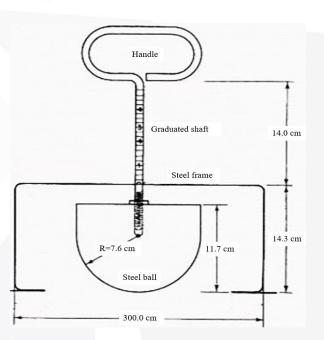


Box Test

- A simple test that examines:
 - Response to vibration
 - Filling ability of the grout (avoid internal voids)
 - Ability of the concrete to hold an edge

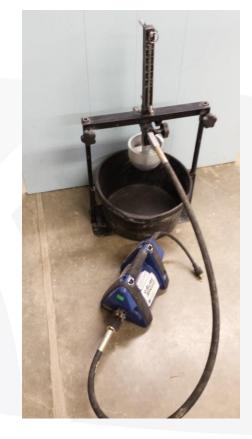
Box Test

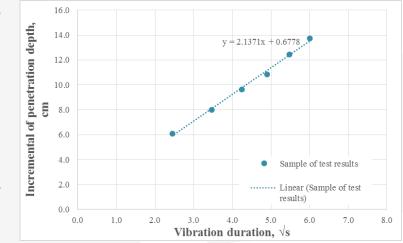
- Add 9.5" of unconsolidated concrete to the box
- Insert 1" diameter stinger vibrator (8000 vpm) into the center of the box over a three count and then remove over a three count
- The edges of the box are then removed and inspected for honey combing and edge slump



VKelly

- Kelly ball test
 - Developed in the 1950s in US
 - Standardized in California DOT test
 - Comparable to slump test
 - 1.1 to 2.0 times the Kelly ball reading





VKelly

- Measure initial slump (initial penetration)
- Start vibrator for 36 seconds at 8000 vpm
- Record depth every 6 seconds
- Repeat
- Plot on root time
- Calculate slope = VKelly Index

From Peter Taylor

www.ncenet.com

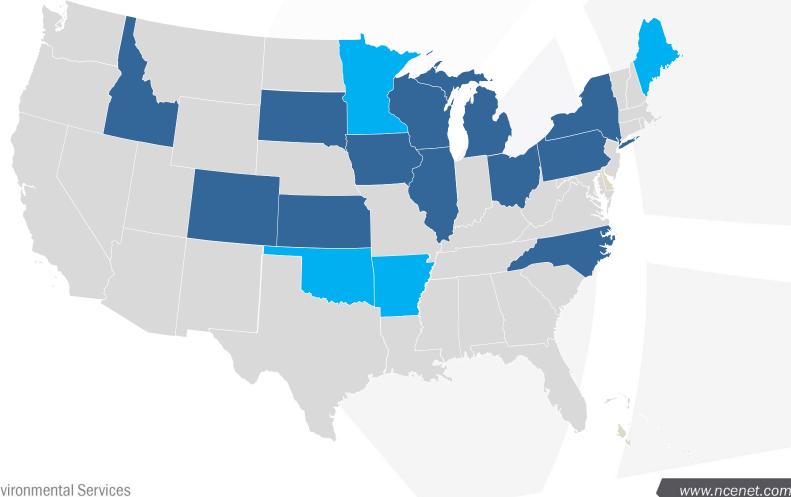
Collaboration. Commitment. Confidence.™

Quality Control

- Tracking how our concrete varies
 - Unit weight
 - Air content/SAM
 - Water content
 - Formation factor
 - Strength
- This is important information that we are ignoring
- AASHTO PP-84 provides guidance for QC
 - Testing targets, frequency, and action limits
 - Guidance will be expanded

This is Just the Beginning

- Best approaches to provide guidance on critical durability issues are provided
- Detailed commentary provides background
- Over time everything will improve:
 - Tests
 - Specification
 - Commentary
 - Implementation
 - People's attitude
 - Our concrete



New Pooled Fund Study

- PEM Pooled Fund TPF-5(368)
- Provide technical support to try portions of PEM
 - Introduce PEM to concrete acceptance programs
 - Support PEM with Mobile Concrete Trailer
 - Provide guidance on tests/implementation
 - Develop quality control guidance
 - Incentive Fund Program
 - Develop the next generation of tests to evaluate durability in fresh concrete

New Pooled Fund States

Collaboration. Commitment. Confidence.™

Questions?

www.ncenet.com