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Pavement Foundations are Important
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What is Remaining Service Life?

" Future performance of :
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Mechanistic Pavement Design
Is Part 1 of the Solution

» Provides the framework for using
performance based material properties

» Free pavement design software available
www.dot.state.mn.us/app/mnpave/index.html

» Just Google “MnPAVE”




Minnesota Department of Transportation
Office of Materials & Road Research

1400 Gervais Avenue, MS 645

Maplewood, MN 55109

Memo
TO: PCMG, CMG, MnDOT Districts, Mateyials Engineers, Soils Engineers, State Aid
FROM: Glenn M. Engstrom, Director
Office of Materials & Road Réséarch
DATE: October 31, 2014

SUBJECT: Pavement Design Manual Publication
I am pleased to announce the publication of the MnDOT Pavement Design Manual.

This publication represents a significant effort to update pavement design procedures and codify
existing documents into a single point of reference. As of November 1, 2014, all MnDOT
pavement designs shall follow the pavement design, pavement-type selection, LCCA, and alternate
bidding as laid out in the Pavement Design Manual. To view the manual, please follow
http://www.dot.state.mn.us/materials/pvmtdesign/newmanual.html




Design Requires Performance Inputs
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Performance Based Construction
Testing is Part 2 of the Solution

» Draft specifications produced by NCHRP 10-84
and Transportation Pooled Fund TPF 5(285)

» Modified version is available at NRRA Pooled
Fund website (Geotechnical Team)
http://www.dot.state.mn.us/mnroad/nrra/index.html

» Just Google "“NRRA”
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Change is Underway

» From Traditional Construction Testing
o Specify Relative Density
o Specify Gravimetric Moisture
o Observation and Test Rolling

» To Performance Based Construction Testing
o Specify Modulus and/or Strength
o Specify Volumetric and/or Gravimetric Moisture
o Observation, Test Rolling, and/or Intelligent Compaction




DCPs and LWDs In Indiana

DCPs LWDs
Indiana DOT 130+ 60+
Private Sector 30+ 10+

DCP Indiana DOT Test Method No. 509-15P
LWD Indiana DOT Test Method No. 508-12T




Back to the Future:
Ralph Proctor
reminds us.

m Strength is not achieved
by density alone.

m Optimum moisture is for
compaction.

m Need to avoid rutting
during construction.

photo courtesy of Dr. J. David Rogers
University of Missouri-Rolla




Ralph Proctor, 1945, Trans 110, ASCE

» “Methods for hand compaction, such as
dropping various weight tampers from
different heights and mechanical tampers,
were tried and discarded.”

» “No use is made of the actual peak dry
weight.”

» “The measure of soil compaction used is the
iIndicated saturation penetration resistance.”
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Proctor Penetrometer




Dynamic Cone Penetrometer

ASTM D 695



Light Weight Deflectometer

ASTM E 2583 07
(includes load measurement)

ASTM E 2835 11
(no load measurement)

AASHTO TP 123-01 draft
(determining lab target values)

AASHTO TP 456-01 draft
(field quality assurance)

http://roads.maryland.gov/OPR_Research/
MD-17-TPF-5-285-LWD_REPORT.pdf
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Benefits of Performance Tests

» Empowers inspector with useful measures
» Verifies pavement design inputs

» Creates as-built record of construction

» Optimizes future pavement designs




Design, Construction and Performance

Construction Quality Control
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Construction Testing Summary

» LWDs and DCPs are being used to measure
properties that significantly affect performance
(this includes moisture measurement).

» Minnesota DOT policy encourages compaction
equipment be used to fully map the as-built
pavement layers.

» AASHTO draft specifications are available for
performance based construction management.




Quantifying the Importance
of Moisture




MnROAD Case Studies

Ruth Roberson Thesis, 2007 |
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Lessons Learned from Case Studies

» Modulus and strength are greatly affected by the
moisture between the particles, which causes a
suction or tensile stress between the particles.

» Tensile stress between particles depends on:
o Quantity of sand, silt, and clay particles (gradation)
o Particle shape (roughness)
o Porosity (total void space “openness”)
o Moisture content (how much water is in the voids)
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Need Moisture Content Inputs
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Laboratory Resilient Modulus




Numerical Modeling Results

Particle Friction 0.9 | Particle Friction 0.9
Suction Stress 5 kPa : Suction Stress 30 kPa

Confining Stress 100 kPa ] Confining Stress 100 kPa
Modulus (slope) 204 MPa ] Modulus (slope) 242 MPa
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Seasonal Factors Compared
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Quantifying the Benefit
of Geogrid
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TH 72 Geogrid Installation 2011
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Geogrid in Aggregate Base Layer

9" Reclaim

* |ldeally geogrid would be
the only difference
between test sections.

TEST SECTION R

« Reality Is that other
variables include saoill, 4.5" SPWEB340C wearing course

water, and temperature. -
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Field Testing
and Numerical Modeling
of In Situ Resilient Modulus
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IC Map of Geogrid MNnROAD 2017

TX190L
‘ »

" TX190L + Non-woven

/" BX1300 + Non-woven

C_BX1300

Figure Courtesy of Ingios Geotechnics

Link to Research Pays Off Seminar, David White, October 2017
http:/ /www.dot.state.mn.us/mnroad/researchpaysoff/index.html




Numerical Modeling of Geogrid

PFC3D 5.00

015 Itasca Consulting Group, Inc.
mechanical step : 1426

‘Wall name

Facets (12)
mvBack
mvBottom
mvCylSide1
mvFront
mvLeft

I mvRight

mvTop




Parameters Studied

Aggregate gradation
Friction between particles (roughness)
Moisture content (suction/tensile stress)

Confining stress
Geogrid depth within aggregate base layer
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Triaxial Grid Deformed by Aggregate
R i .




Triaxial Grid Deformed by Aggregate
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Confinement = 150 kPa Particle Friction =.8 Moisture Tension =1 kPa (gap 3 mm)
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Confinement = 150 kPa Particle Friction =.8 Moisture Tension =1 kPa (gap 3 mm)
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With Grid
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Confinement = 150 kPa Particle Friction =.8 Moisture Tension =1 kPa (gap 3 mm)

With Grid

Slope = M

—
1

e
o
1

grid

=
= =
1 1

o
[
1

-Deviatoric Stress [Pa] x10"5

e
o

ot
&}

UNLAL LN SR LR AL BRI ML
03 04 0.5 0.6 0.7 0.8 09 1
-Axial Strain x10"-3

Geogrid Gain Factors

(M,/M; at axial strain)
(0.02%) (0.05%) (0.1%)

2.4 2.2 2.1

2.4 2.1 2.0




Rutting vs Geogrid Gain Factor

Damage must be less than of 1.0 to achieve 20 year design life.
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Geogrid Gain Factor




Lessons Learned and Next Steps

* Modulus increases as moisture suction
Increases.

* Geogrid provides a quantifiable benefit that
enhances pavement performance.

* |Implementation continues so that the people’s
Investments are used more effectively.




Thanks for Listening.

Please ask guestions and keep pulling together.




