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Prescriptive Specifications 

• Some people love their prescriptive specifications 

• They are referred to  
some as recipe  
specifications 

• Frequently they focus  
on slump, air and  
compressive strength 

• If this works for you 
that’s fine 
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Current Concrete Durability Specifications 

• Based on empirical observation 

• Based on concrete systems  
(largely 4 component systems)  
which are rapidly becoming out dated 

• Many times concrete is falling apart 

• Concrete is not the dinosaur, our  
specifications however …… 
 

• Can we provide an option for a performance based alternative 

• AASHTO is currently considering changes 
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Think of AASHTO Approach as a Menu 

• You will see many  
options however  
the idea is to choose 
the items that you want 

• 6.3 Strength  

• 6.4 Shrinkage 

• 6.5 Freeze-Thaw/Salt 

• 6.6 Transport  

• 6.7 ASR 

• 6.8 Workability 
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Lets Start with What is Not There – Pores  
Entrained/Entrapped Air – BFP, Important for Freeze-Thaw 

Capillary Pores (5nm-10 mm) – we can control by water, w/c (Transport) 

Gel Pores (2-5 nm) – Part of the structure, important for shrinkage 

 

 
Air controlled 

by air  

Capillary 
controlled 

by w/c  

Gel is part  
of the structure 

(little we can do) 
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Transport Tests (e.g., Corrosion) 
Formation Factor 
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Resistivity Test Becoming Popular  

• Fast (seconds to minutes) 

• Low cost ($2-2500 dollars) 

• Portable (put it in your pocket) 

 

 

 

• However resistivity is not a fundamental 
measurement and we can do better 
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Resistivity as a Test, F Factor Spec 

• Related to pore volume (f) 

• Related to pore connectivity (b) 
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Capillary Pores and W/C 
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Relationship Between RCPT, Formation 
Factor and Resistivity 

• Begin with the equation 
to convert RCPT (Q) to  
Formation Factor (F) 
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Example Corrosion of Reinforcing Steel 
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Formation Factor – To Service Life 
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Volume Change and Cracking 
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Shrinkage and Shrinkage Cracking 

• Durability is key  

• Transverse cracking in 

100,000+ bridges 

• 62% of DOT’s consider 

cracking as a problem 

(NCHRP) 

• Cracks shorten service life, 

increase maintenance, and 

accelerate corrosion 

• Increase in HSC  
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Here we see cracks spaced at 2.5 ft  

on the approaches to a bridge 



  Performance Specifications and Durability Slides Prepared by Jason Weiss Slide 15 of 32 

• Looking at 
shrinkage of the 
components 

• Aggregate generally  
don’t shrink  

• Paste is the portion 
that shrinks 

• Shrinkage is a paste 
property 

• SRA/IC different 
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Volume of Paste is One Approach – V Paste 

• Dutron (1956) shares data 

• L’Hermite (1960 no  
influence of the w/c) 
(We can shown this  
is due to PSD) 

• Pickett (‘65) and  
others work on eqn 
 

 

• SRA, IC change this 
approach doable) 
 

 n
AggPasteConcrete V 1
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Probability of Cracking 
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Results Of An Alternative Approach  
to Consider Variability in Shrinkage 

• Plotted the percentage  
of specimens cracked by  
a specific age 

• Results  
of 10,000 simulations 

• Can quantify risk or total 
probability 
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Probability Based Shrinkage Specification 

200 400 600 800 1000

Shrinkage []

0

10

20

30

40

50

60

70

80

90

100

P
ro

b
a

b
il

it
y

 o
f 

C
ra

c
k

in
g

 [
%

]

Base

Fast

Slow

DOR=60%

50%

20%

5%

Grade 2

Grade 3

Grade 1

Grade 4

200 400 600 800 1000

Shrinkage []

0

10

20

30

40

50

60

70

80

90

100

P
ro

b
a

b
il

it
y

 o
f 

C
ra

c
k

in
g

 [
%

]

Base

Fast

Slow

DOR=100%

50%

20%

5%

Grade 2

Grade 3

Grade 1

Grade 4

• Shrinkage can be related to cracking potential and this simple approach 
begins to relate a simple test to performance 
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Dual Ring Test (Submitted to AASHTO in 12) 
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Saturation Based Model For 
Freeze-Thaw Damage 
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High Saturation Leads to Damage 
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Neutron Radiography 
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Sorption Based Freeze-Thaw Model 
(Neutron Radiography) 

Lu
ce

ro
 e

t 
al

. 2
0

1
5

 



  Performance Specifications and Durability Slides Prepared by Jason Weiss Slide 25 of 32 

Sorption Based Freeze-Thaw Model 
(Neutron Radiography) 
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Saturation Based Model 

Todak et al. 2015b  
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Deterministic Model 
• Design Mixture  

• 6% Air 

• 564 lb cement 

• Both w/c and  
air are  
important 

• Here is an  
example of the  
interaction 
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What About Variability 
• Design Mixture  

• 0.42 w/c 

• 6% Air 

• 564 lb cement 

• Fine Aggregate  

• Lets Assume 
Variations 

• w/c 5%  
(0.38 to 0.46) 

• Air 15%  
(4.2 to 7.8) 
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What About Variability 

• Design Mixture  
• 0.42 w/c 

• 6% Air 

• 564 lb cement 

• Fine Aggregate  

• Lets Assume 
Variations 

• w/c 5% (0.38 to 0.46) 

• Air 5%   (5.4 to 6.6) 

• Air 15% (4.2 to 7.8) 

• Air 15% (3.0 to 9.0) 

 
Calculated from the ARA PRS Project  

Criteria 
 20% Failure Rate 
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Model Correlates with Damage 
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Main Thoughts – Are We Ready ?  

• Water to cement ratio (w/c) 
• Historically – w/c is specified for transport (pore volume and connectivity) 

• Performance – The formation factor can measure this directly (formation 
factor is inversely related to pore volume and connectivity) 

• A w/c to resistivity to F Factor  

• Air content 
• Historically – A table was created based on empirical field performance 

• Performance – New tests exist, new predictive methods exist for 
saturation and salt and we can begin to link these together 

• Shrinkage methods are ready based on models or tests 
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Thank you  
Are There Any Questions 

 
Jason Weiss , Edwards Distinguished Professor 

jason.weiss@oregonstate.edu 
 

http://cce.oregonstate.edu/deicing-salt 
 

http://cce.oregonstate.edu/internalcuring 
 

http://cce.oregonstate.edu/resistivity 
 


