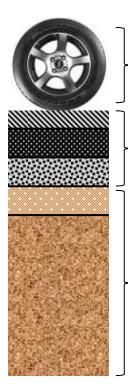
Implementation Process of

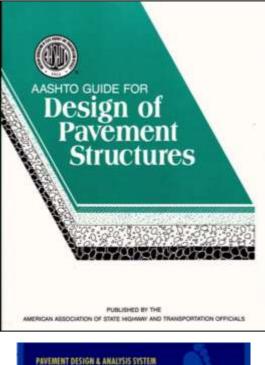
Pavement ME Design in Maricopa County

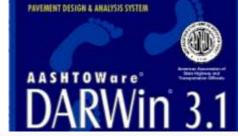
Gant Yasanayake PhD, PE Pavement Design Engineer MCDOT

John Shi PhD, PE Materials Engineer MCDOT


Main Objective of this Study

- Explore the new pavement design software program
- Find suitable local calibration factors for County conditions
- Implement the new design method at Maricopa County in the future


Current MCDOT Pavement Design Procedure



Traffic: AADT & % Trucks converted to ESALs

AC and AB: *a*_i and E

Subgrade: R-Value, Sieve and PI correlated to M_R

Current Pavement Design: Pros and Cons

Roadway Design Manual

Adopted: November 3, 1993 Updated: February 2016

distante County

2901 W. Duraugo Street

Seamly, AZ 13100

Chapter 10 **MCDOT** Pavement Design Guide

PROS

- **Inexpensive testing**
- Simple design
- layer thicknesses

Based on one AASHO Road

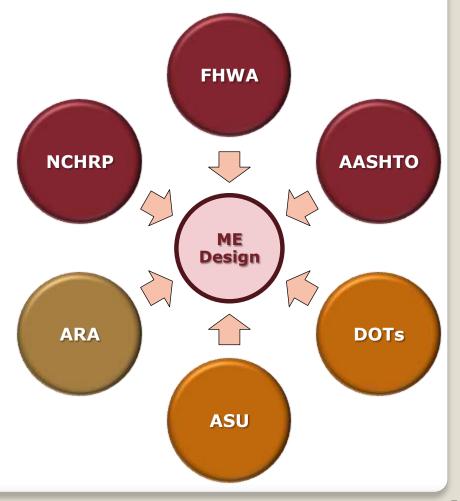
Test conducted in the late 1950s

The latest update was in 1993

Uses empirical relations

CONS

AASHO Road Test



2016 Arizona Pavements/Materials Conference November 17, 2016

New Pavement ME Design

- Pavement ME Design is built upon Mechanistic-Empirical Pavement Design Guide (MEPDG)
- Reflects eight years of research and development by ASU and others
- Continuous improvement under NCHRP, the FHWA and State Agencies

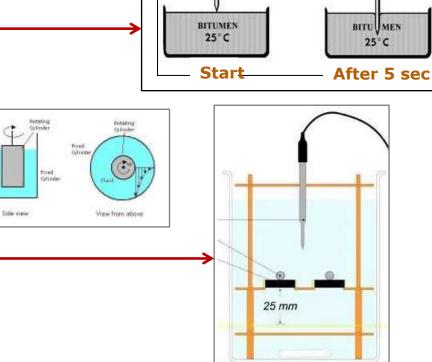
New Pavement ME Design: Pros and Cons

PROS

- Mechanistic behavior of structure is modeled
- Based on extensive research effort over many years
- Predicts pavement performance
- Hierarchical input levels available
- Possible to carry out local calibrations

CONS

- **Expensive testing is required**
- The design process is not very simple
- The software is expensive to maintain
- Users should gain good knowledge to input data, interpret analyses, and make reasonable decisions


New Pavement ME Design Laboratory Testing

Binder Viscosity Testing

Penetration at 77 °F

 Brookfield Viscosity at 212, 250, 275, 300, – and 351 °F

Softening Point

100 g

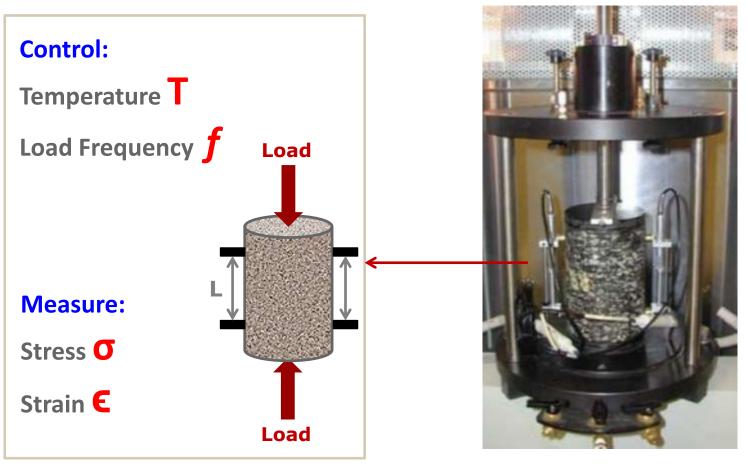
Penetration

(0.1 mm units)

100 g

heater & magnetic stirrer unit

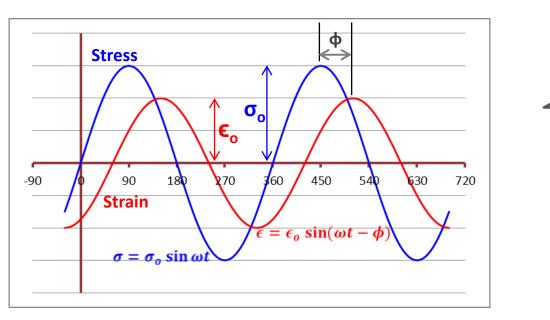
Viscosity-Temperature Susceptibility (VTS)

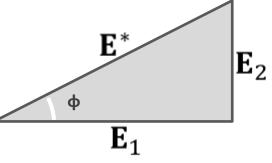


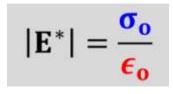
Regression parameters Ai (intercept) & VTSi (slope) describe the Viscosity-Temperature relationship

For the plot shown: Ai = 11.3383 VTSi = - 3.7955

Maricopa County Department of Transportation


Dynamic Modulus Test

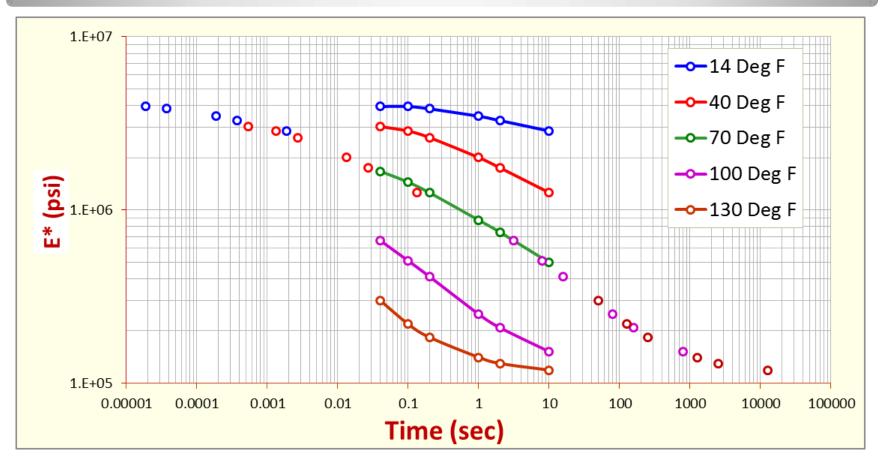




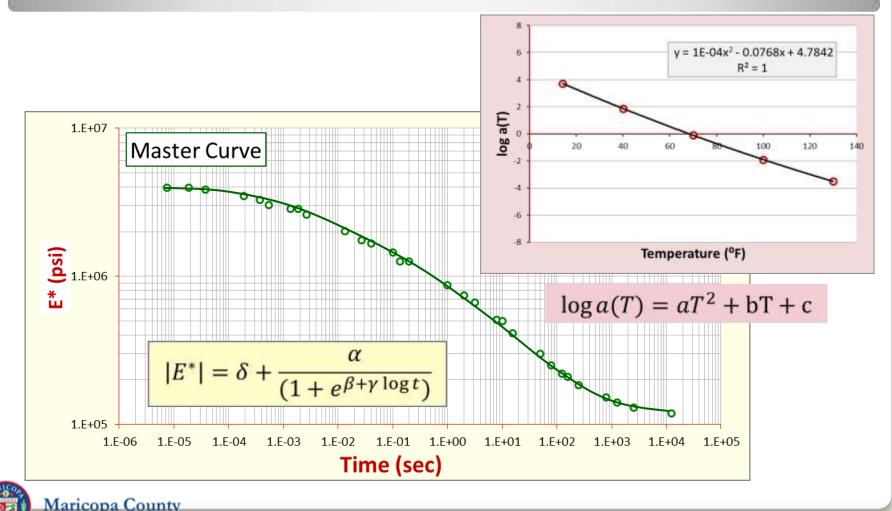
2016 Arizona Pavements/Materials Conference November 17, 2016

Dynamic Modulus, E* of Visco-Elastic Material

E* in kips/in² Obtained after Testing


EG	Frequency (Hz) Time (sec)							
	0.1	0.5	1	5	10	25		
Temp (°F)	10	2	1	0.2	0.1	0.04		
14	2,854	3,276	3,470	3,829	3,947	3,952	Max	
40	1,258	1,749	2,004	2,614	2,850	3,030		
70	497	743	872	1,256	1,445	1,670		
100	152	209	250	412	508	665		
130	119	130	141	184	219	300		

Min

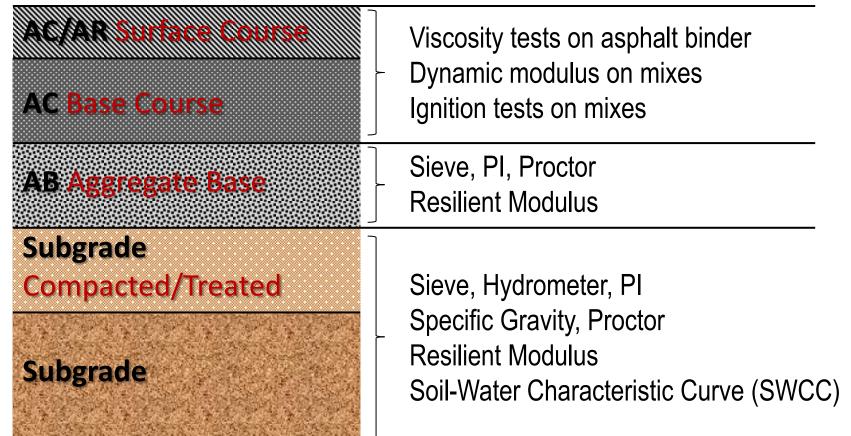

Plotting E* and Master Curve

Principal of Time-Temperature Superposition

Master Curve Function & Shift Factor Function

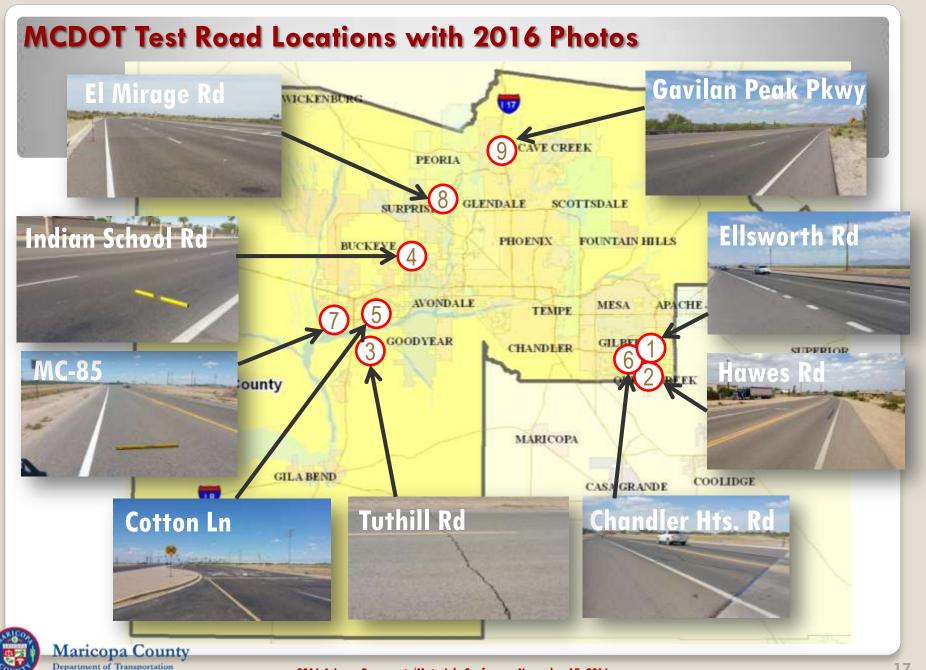
Maricopa County Research 2006 to 2009

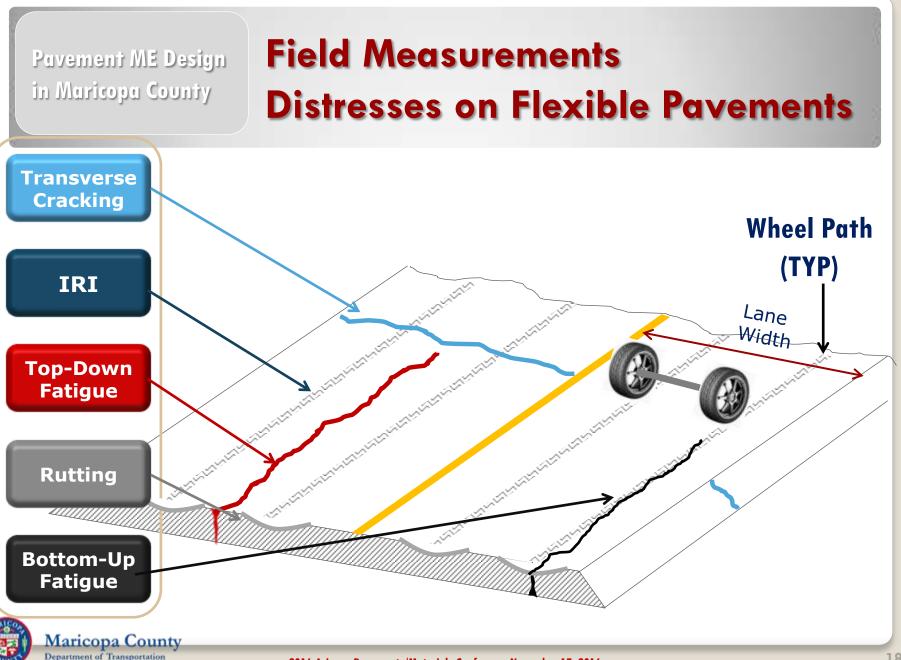
- ASU conducted a research program for Maricopa County from 2006 to 2009
- All pavements were flexible pavements
- Binder, AC mix, AB, and soil samples from 15 road construction projects were collected for testing



Department of Transportation

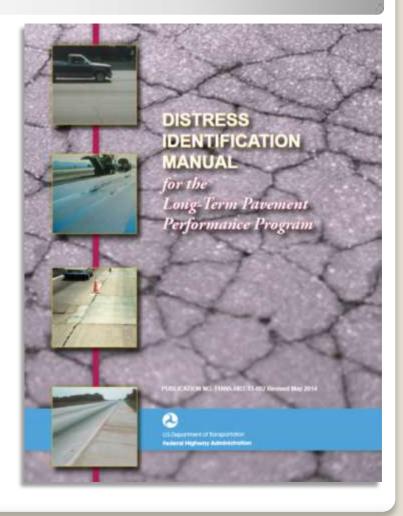
Material Characterization under The Research Program


Maricopa County Department of Transportation


MCDOT Test Roads

Project Termini Site **Traffic On** Road No. **Project Name** ID Align. Date End Start **Ellsworth Road** EG NS Germann Rd Pecos Rd Jan-07 1 HH **Hawes Road** NS 2 Mar-07 Hunt Hwy Stacey Rd **Tuthill Road** NS 3 TQ Aug-07 **Oueen Creek Rd** Pecos Rd 10 Indian School Road Old Litchfield Rd EW **May-08** 4 **Dysart Rd** СМ **Cotton Lane** NS 5 **Cotton Ln Bridge** MC 85 Nov-07 CS **Chandler Heights** Sossaman Rd EW Mar-08 6 Hawes Rd **MC 85** 7 MT Turner Rd SR 85 EW **May-08 El Mirage Road** ED NS 8 **Deer Valley Rd** Loop 303 Mar-09 **Gavilan Peak Parkway** 9 GC NS Cloud Rd Daisy Mtn Rd **May-09**

Pavement ME Design



MCDOT Distress Evaluation & Database

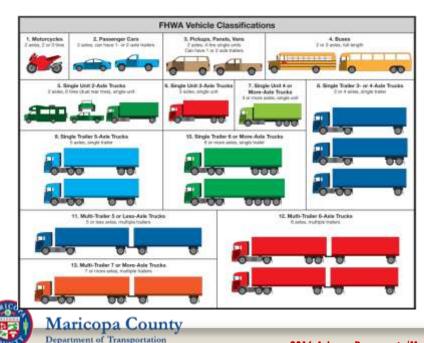
- MCDOT distress evaluations based on LTPP Distress Identification Manual
- MCDOT Roadway Management System (RMS) Database

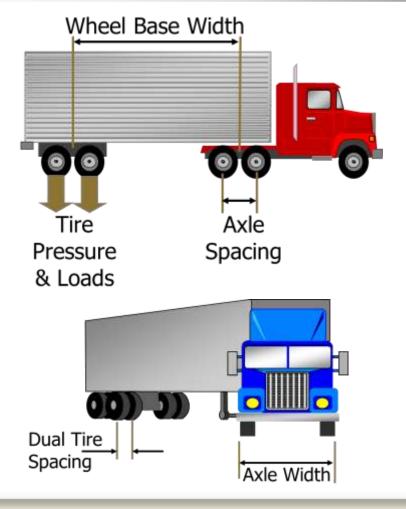
De Roed 🕅	🖺 Include other oritaina				Search For F	Roeds
Search Results	PCR, IPL SUFF Rolings	inventory	1	Total Miles	Lone Wiles	Selfer
< > 0%	Fiom		Offici	To		Ofset

- IRI (International Roughness Index)
- Pavement Condition Rating (PCR)
- Sufficiency Rating
- Traffic Data
- Pavement Structure
- Work History

IRI Field Measurements

Laser Truck





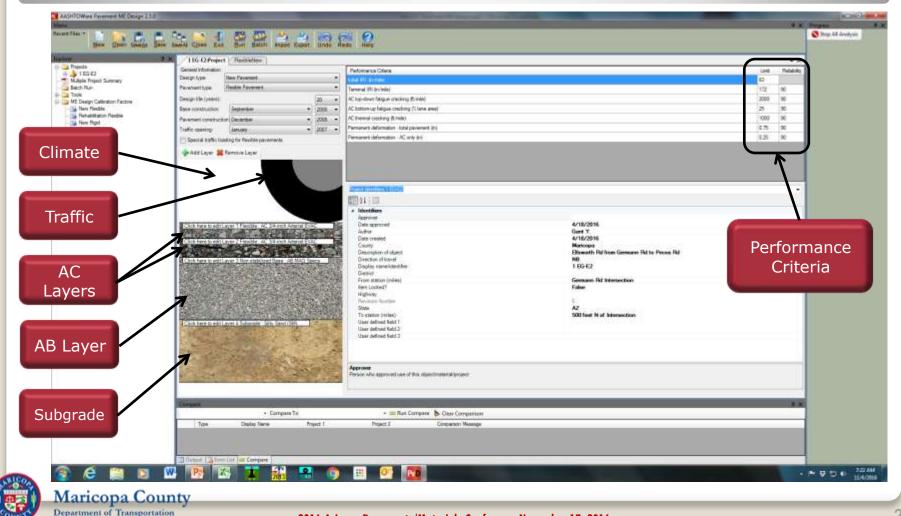
MCDOT Traffic Data & Axle Configuration Inputs

Traffic data from MCDOT Traffic Management group:

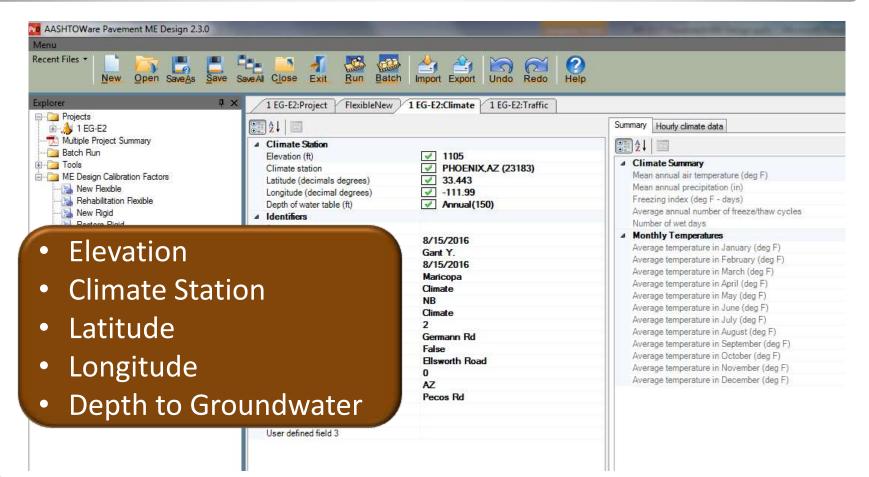
- **1.** ADT counts over the past years
- 2. Vehicle class distribution
- 3. Operational speed

Data Entry for Pavement ME Design Program

- Weather data over 20 year period
- Latitude, Longitude, and Elevation
- Depth to Groundwater Table



AADTT (Average Annual Daily Truck Traffic) Class Distribution (Class 4 thru 13) Axle Distribution (Single, Tandem, Tridem, & Quad)


Binder Viscosity Asphalt Mix (E*, binder content, air voids) Base material (Gradation, PI) Subgrade (Gradation, PI, R-Value, Resilient Modulus, SWCC)

New Pavement ME Design Material Data

2016 Arizona Pavements/Materials Conference November 17, 2016

New Pavement ME Design Climate Data

Maricopa County Department of Transportation

New Pavement ME Design Traffic Data

Growth Rate (1.)

6.5

2.3

6.6

6.6

2.4

Cuise Eat Bat Satur esport Export Undo Redu Help

E2-Traffic

Vehicle Class Distribution wel Growt

Detribution (1)

7.4

25.4

13.4

42

Vehicle Class

Dans 3

Cares 6

Clean 1

Case 8 Case 9

1211日		
# AADTT	-	20023
Two-way AADTT	1	1626
Number of Janes	1	4
Percent trucks in design direct	1	50
Percent trucks in design lane	2	90
Operational speed (mph)	127	54.5
# Traffic Capacity	100	
Traffic Capacity Cap	27	Not enforced
# Axle Configuration	100	
Average asle width (ft)	127	85
Touris and the second second	100	21.0

• AADTT

Maricopa County Department of Transportation

- Number of Lanes
- Operational Speed
- Class Distribution
- Growth Rate
- Axle Configuration

Display Stame

Project 3

• Axles per Truck

19.3			6.6		Compound			lb.	
			66						
2.4			7.5		Companyed			n and n	
		_	66		Compound		1 1	de de	
6.5			6.6		Compound	1	1 k.	no alla	
							6	Import Hand	
Ower 5	Class 6	Clair	7 Class 8	Care 9	Oess 10	Cierce 11	Clare 12	Clase 1	
	1	1	1	1	1	1	1	1	
ri j	1	1	1	1	1	1	1	1	
	1	1	1	\$.:	1	T.	1	1	
	1	1	t	1	1	1	1	1	
	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	
	1	1	1	1	8	1	1	1	
	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	
Single			Tanden		Talen		Quet		
1.62			0.35		0		0		
2			0		a		D		
1.02			0.99			0		0	
1			0.26		0.85		0		
2.38			0.67		â		0		
1.12			1.93		0		8		
			1.08		0.89		D		
1.19	VALC:		0.26		0.06		0		
119			14.45						
			L14		0.06		0		

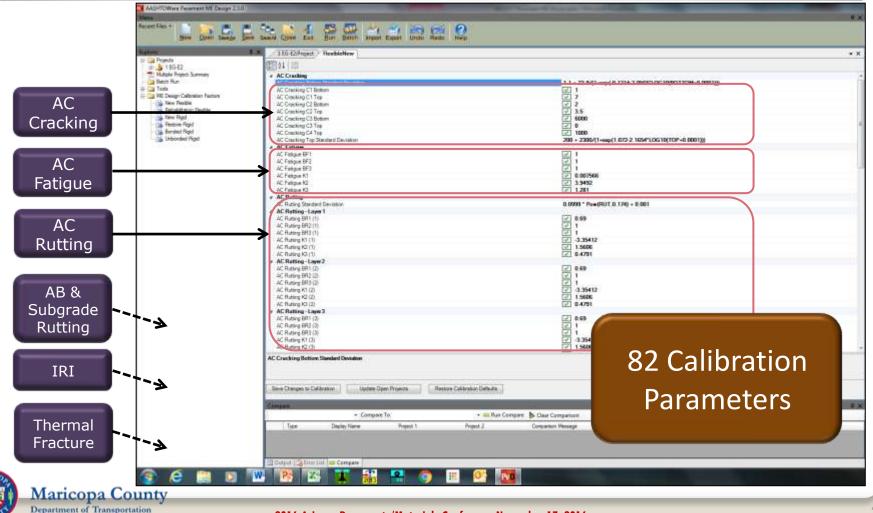
Growth Function

Computation

Compound

Compound

Composited


.

• 3

Lond Default Distribution

New Pavement ME Design Calibration Screen

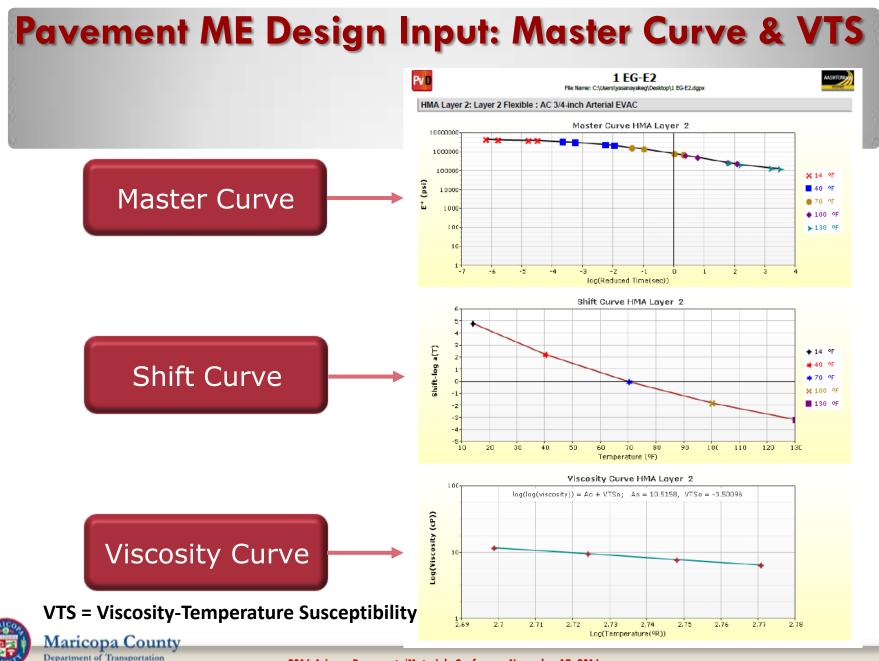
Pavement ME Design Computation Process

Integrated Climatic Model

Thermal Cracking

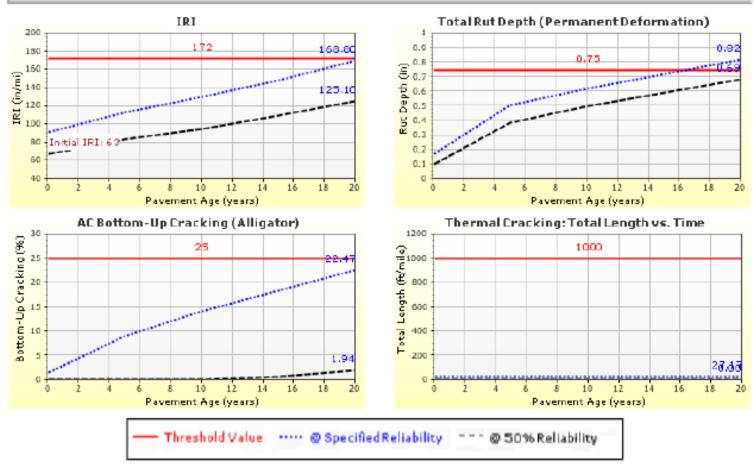
Asphalt Damage

Asphalt Rutting & Fatigue


Asphalt IRI

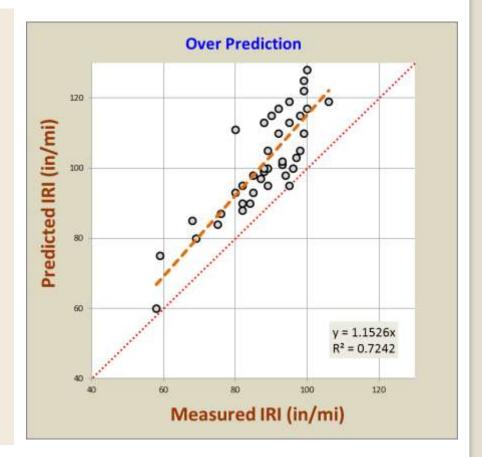
ts						
Design Type: FLEXIBLE Paveme		nent construction: December, 2006 Source				
re				Traffic		
Material Type	Thickness (in)	Volumetric at Con	nstruction:	And the set	Heavy Trucks	
AC 3/4-inch Arterial EVAC	2.5	Effective binder	14.3	Age (year)	(cumulative)	
AC 3/4-inch Arterial EVAC	3.0	the second se	1.252.77	2007 (initial)	1,626	
AB MAG Specs	10.0	Air voids (%)	5.8	2017 (10 years)	3,623,460	
Silty Sand (SM)	Semi-infinite	1		2027 (20 years)	10,489,300	
	LEXIBLE Pavem Traffic ITE AC 3/4-inch Arterial EVAC AC 3/4-inch Arterial EVAC AB MAG Specs	Material Type Thickness (in) AC 3/4-inch Arterial EVAC 2.5 AC 3/4-inch Arterial EVAC 3.0 AB MAG Specs 10.0	Material Type Thickness (in) AC 3/4-inch Arterial EVAC 2.5 AC 3/4-inch Arterial EVAC 3.0 AB MAG Specs 10.0	Material Type Thickness (in) Volumetric at Construction: AC 3/4-inch Arterial EVAC 2.5 AC 3/4-inch Arterial EVAC 3.0 AB MAG Specs 10.0	Material Type Thickness (in) Volumetric at Construction: Ac 3/4-inch Arterial EVAC 2.5 AC 3/4-inch Arterial EVAC 3.0 AB MAG Specs 10.0	

Distress Type		Specified ability	Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	168.82	90.00	91,54	Pass	
Permanent deformation - total pavement (in)	0.75	0.82	90.00	72.67	Fail	
AC bottom-up fatigue cracking (% lane area)	25.00	22.47	90.00	92.49	Pass	
AC thermal cracking (ft/mile)	1000.00	27.17	90.00	100.00	Pass	
AC top-down fatigue cracking (ft/mile)	2000.00	3406.60	90.00	73.15	Fail	
Permanent deformation - AC only (in)	0.25	0.52	90.00	3.29	Fail	


Pavement ME Design Output: Distress Charts

1 EG-E2 File Name: C:\Users\yasanayakeg\Desktop\1 EG-E2.dgpx

Distress Charts


Local Calibration & Validation Procedure

Local Calibration: Bias and Goodness of Fit

- Reduce bias (avoid overdesigned and underdesigned pavements)
- Goodness-of-fit criteria is used to find the best set of calibration parameters
- Method of least squares using linear regression analysis is adopted

Approach to Local Calibration and Validation

Traditional Split-Sample

Use split-sample approach if the sample size is large

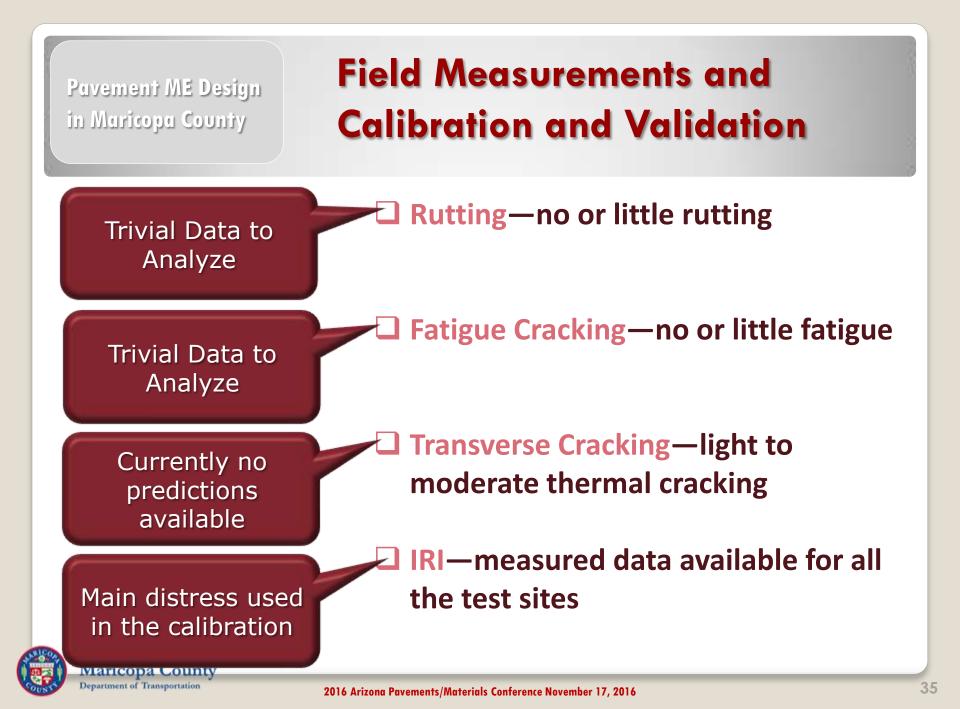
Jack-Knifing

Use jack-knife approach if the sample size is small

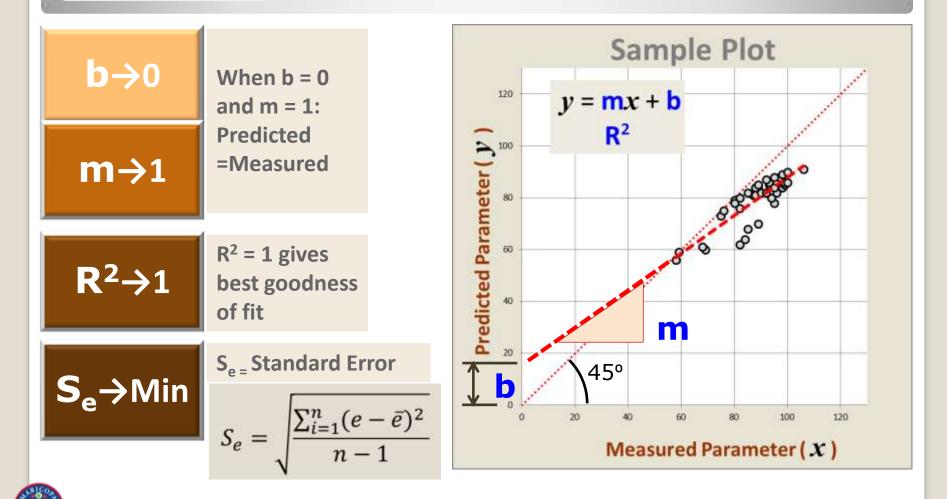
Model Validation Jack-Knife Method

For "n-1 Jack-Knife"

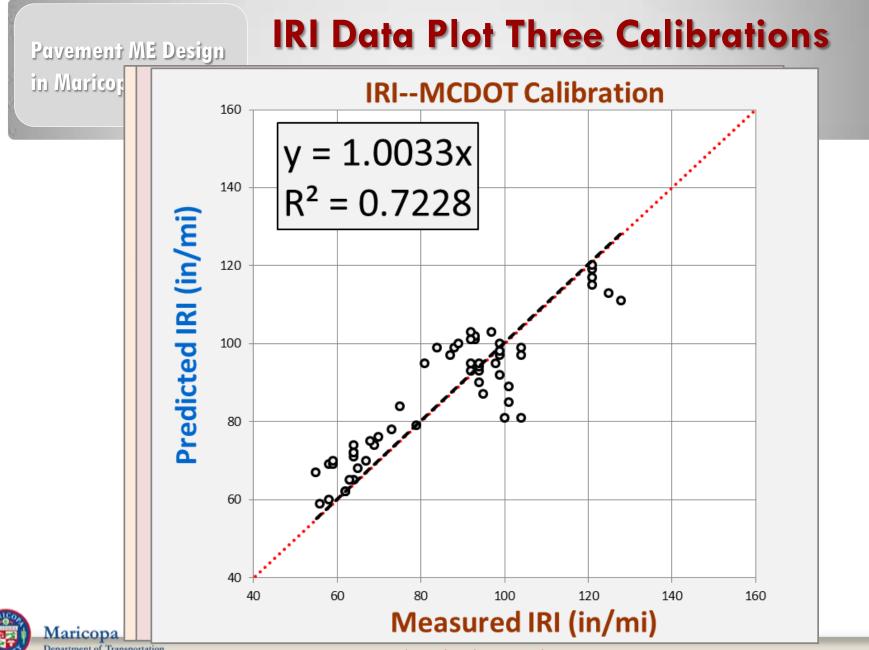
validation, remove one set of data and calibrate the model with remaining n-1 data sets


n = 9 for this study

The 9 sites were grouped into nine 1 | 8 groups as shown on the table


The final calibration was checked with each data set

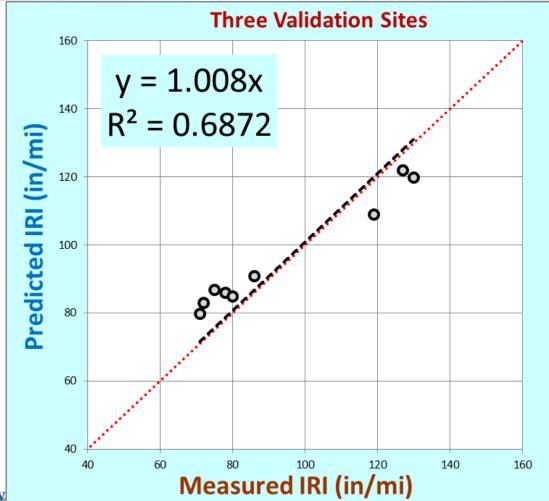
Site>	EG	нн	ŢQ	10	СМ	CS	MT	ED	GC
1	С	С	С	С	С	С	С	С	V
2	С	С	С	С	С	С	С	<	С
3	С	С	С	С	С	С	<	С	С
4	С	С	С	С	С	V	С	С	С
5	С	С	С	С	<	С	С	С	С
6	С	С	С	V	С	С	С	С	С
7	С	С	V	С	С	С	С	С	С
8	С	V	С	С	С	С	С	С	С
9	V	С	С	С	С	С	С	С	С


Statistical Parameters

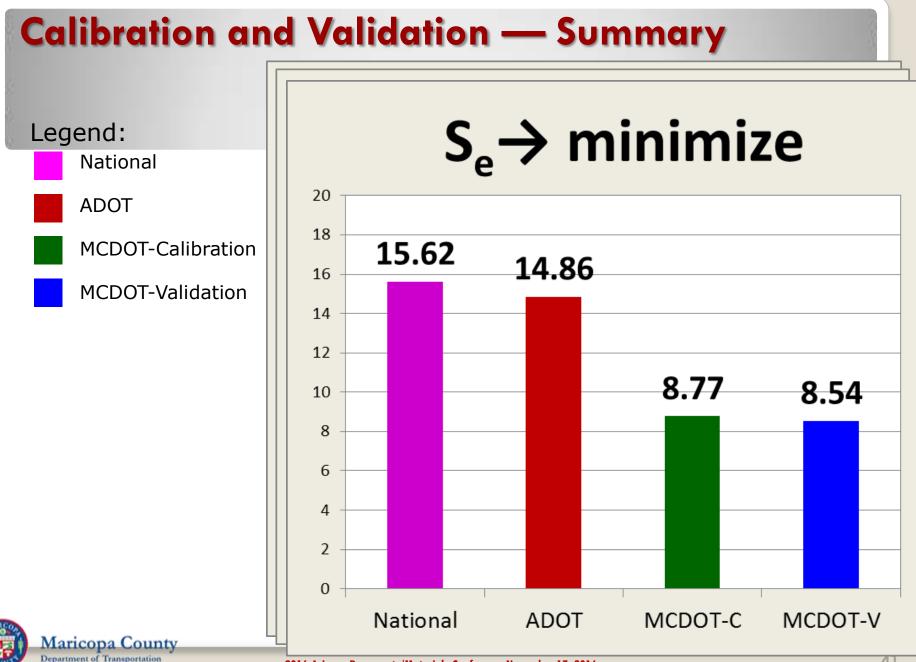
Calibrated Parameters

	Parameter								
	C2	C 4	BR1	BS1	BS1				
	Bottom Up Cracking	IRI	Asphalt Rutting	Base Rutting	Subgrade Rutting				
NAT'L	1.0	0.015	1.00	1.00	1.00				
ADOT	4.5	0.028	0.69	0.14	0.37				
MCDOT	2.0	0.033	0.69	1.00	1.00				

Model Validation: Three Independent Sites


Sites	10	GS	Gilbert Road	South of Salt River	North of Salt River	NS	Jul-11
ier S	11	ST	7th Street	Tanya Road	Desert Hills Dr	NS	May-11
Other	12	EU	Ellsworth Road	University Dr	Adobe Road	NS	Feb-06

- Data from 3 additional roadway projects were used for validation
- These three sites were never used in the calibration process



Validation: IRI Data Plot with MCDOT Calibrations

2016 Arizona Pavements/Materials Conference November 17, 2016

Future Work

- Continue monitoring the test sites and the implementation process of Pavement ME Design
 - Prepare an interim MCDOT Pavement Design Guide and start designing MCDOT pavements using it
- Investigate the possibilities of modeling transverse cracking
- Provide useful suggestions to AASHTO and ARA to solve the problems encontered while using the software

Acknowledgements

- ASU
- ADOT
- ARA
- AASHTO
- Terracon
- MCDOT Traffic Group
- MCDOT Materials Lab
- MCDOT Pavement Management Group

Consulting Engineers & Scientists

Maricopa County Department of Transportation

Thank You!

2016 Arizona Pavements/Materials Conference November 17, 2016