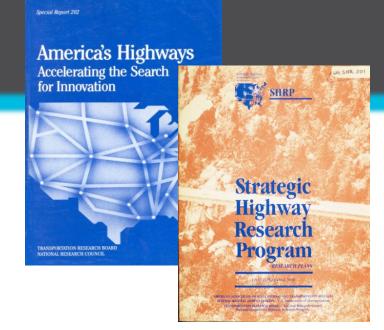
The Long Term Pavement Performance (LTPP) Program Warm Mix Asphalt Experiment and Arizona's Participation

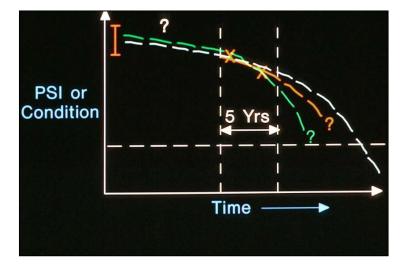
November 19, 2014 Kevin Senn, NCE

Presentation Outline

- Overview of LTPP
- LTPP Projects in Arizona
- LTPP Warm Mix Asphalt Experiment
- Arizona's Warm Mix Projects


Introduction

- The LTPP program began in 1987 as the Strategic Highway Research Program (SHRP)
- The longest running highway research program in history
- \$200+ Million study
- Over 2,500 test sections—over 700 still active
- 16 data modules, 430 tables, 8,000 data elements



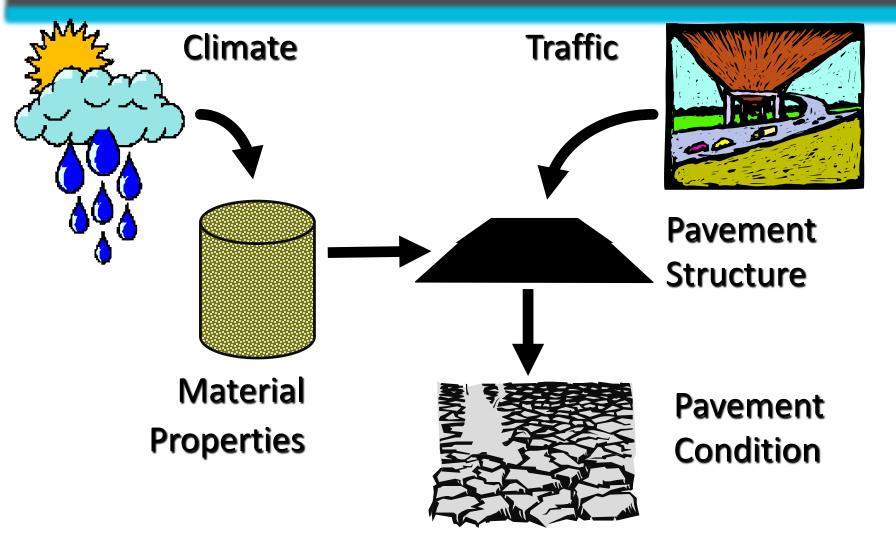
to provide answers to HOW and WHY

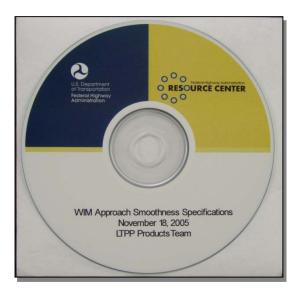
LTPP's GOAL is....

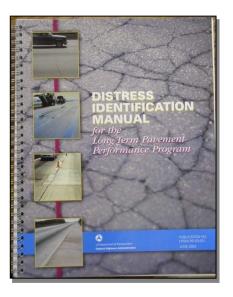
pavements perform as they do!

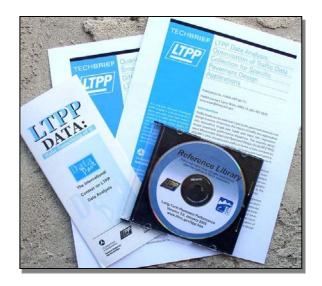
LTPP's CORE FUNCTIONS

Data Collection and Management Data Analysis Product Development




LTPP Data Collection





LTPP Benefits

The LTPP program has generated a wide range of benefits all across the pavement engineering and performance spectrum.

Return on Investment

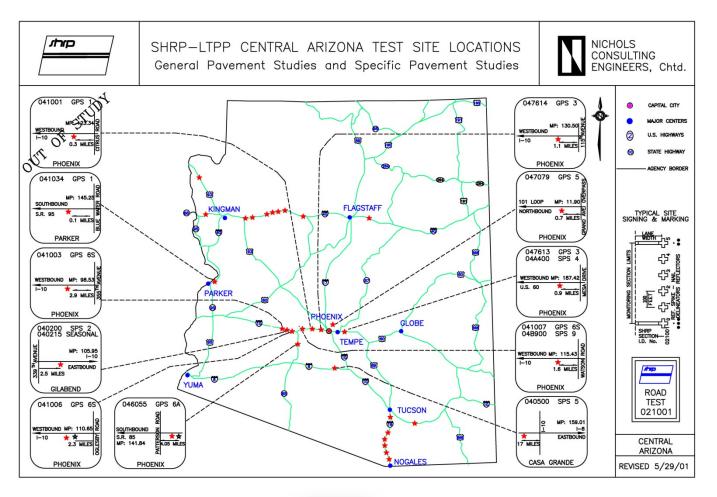
LTPP by the Numbers

LTPP Resource	Statistics	
Requests for Data	48,000 Requests	
Registered LTPP Website Users	3,000 Users (in 75 Countries)	
Published Documents Resulting from LTPP Data	500+ Publications	
ASCE Paper Contest	60 Entries	
Distress Manuals	20+ State Agencies	
FWD Calibration Centers	500+ Calibrations	
WIM Systems	550+ Installations	
SPS Traffic Pooled Fund Study Installations	21 WIM Sites Installed	
MRL Materials	2,000,000 Pounds Available	
MRL Shipments	17,000 Pounds Delivered	

The numerous innovations that have directly resulted from the LTPP program include procedures, tools, manuals, and research findings that have been implemented across the United States and abroad.

Return on Investment Cost Savings

LTPP has already realized \$2 Billion in savings, with the potential for even greater future savings.


Savings To Date	Projected Cumulative Future Savings (2015-2024)	
	No Additional Monitoring	Continued Monitoring
\$2 Billion	\$2.28 Billion	\$4.56 Billion

LTPP Test Sections In Arizona

General Pavement Studies (GPS)

Focus on most commonly used pavement designs

- Experimental design: full factorial
- One 500 foot section per location

Primary Factors

Subgrade: fine & course Traffic: medium & heavy Temp: freeze and non-freeze Moistures: wet and dry

Secondary Factors

AC thickness AC stiffness SN of base and subgrade PCC thickness Joint spacing

GPS Projects in Arizona A Total of 25 Projects*

- **GPS-1** \rightarrow Asphalt Concrete (AC) on Granular Base (16)
- **GPS-2** \rightarrow Asphalt Concrete on Bound Base (2)
- **GPS-3** \rightarrow Jointed Plain Concrete (JPC) (2)
- **GPS-5** \rightarrow Continuously Reinforced Concrete (CRC) (1)
- **GPS-6** → Asphalt Concrete Overlay on AC (17)

*Overlay projects can be in two experiments

Specific Pavement Studies (SPS)

Focus on certain pavement engineering factors
 Experimental design: half factorial
 Multiple 500 foot sections per location

Primary Factors

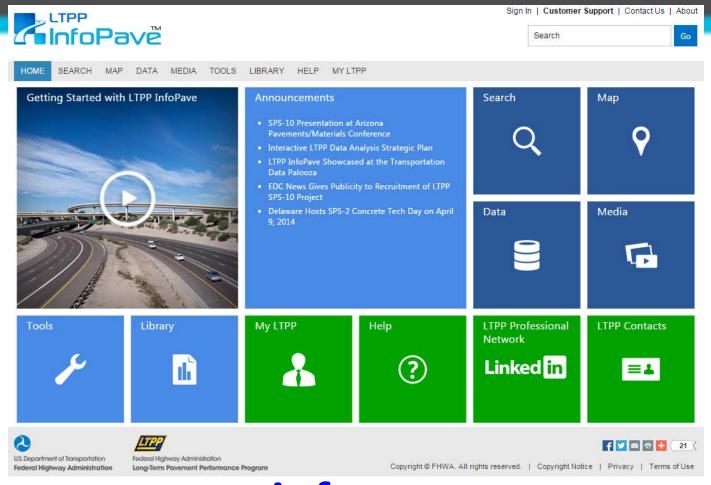
Subgrade: fine & course Traffic: medium & heavy Temp: freeze and non-freeze Moistures: wet and dry

Secondary Factors

AC drainage - yes, no AC thickness AC base type and thickness PCCP drainage- yes, no PCC strength and thickness Lane width Base type

SPS Projects in Arizona

A Total of 12 Projects (121 Test Sections)


- SPS-1 → Strategic Study of Structural Factors for Flexible Pavements (1)
- SPS-2 → Strategic Study of Structural Factors for Rigid Pavements (1)
- SPS-3 → Preventative Maintenance Effectiveness for Flexible Pavements (4)
- SPS-4 → Preventative Maintenance Effectiveness for Rigid Pavements (1)
- **SPS-5** \rightarrow Rehabilitation of Asphalt Concrete Pavements (1)
- SPS-6 → Rehabilitation of Jointed Portland Cement Concrete Pavements (1)
- **SPS-9** \rightarrow Superpave Asphalt Binder Study (3)

Accessing LTPP Data

www.infopave.com

LTPP Warm Mix Asphalt Experiment: Why WMA?

356 million tons of WMA produced in 2012

- 24% of all plant mix produced in US was WMA
- 35 different WMA technologies
- WMA is a priority innovation under FHWA's Every Day Counts (EDC) Initiative

SPS-10 Objectives

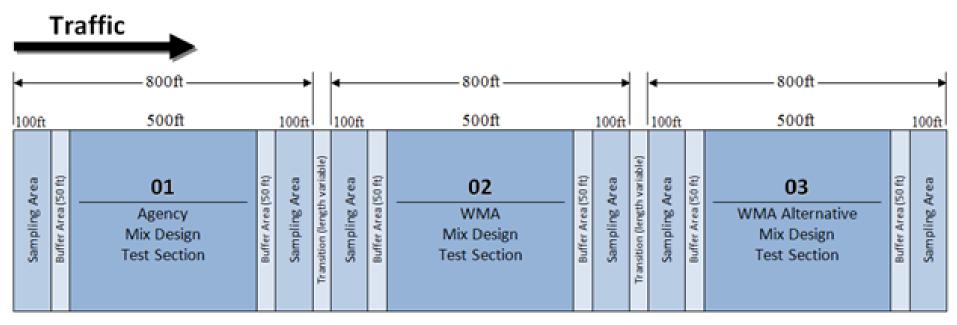
Long-term performance of WMA relative to HMA Capture data on WMA with RAP

SPS-10 Benefits to Agencies

- Detailed construction information including a construction report
- Rigorous materials testing (over multiple intervals) using latest testing technology
- Ongoing FWD, distress, profile, and texture monitoring to study short and long term performance
- Ability to study Agency-specific issues related to WMA

SPS-10 Requirements

Overview


- AC overlay of existing AC pavements
- 2" to 4" overlay thickness
- Dense graded mix
- RAP content 10-25% (binder replacement)
- 1 HMA control test section
- 2 WMA test sections
 - Foaming Process
 - Chemical Additive
- Tack Coats between lifts

SPS-10 Site Layout Requirements

SMMA:

- Production of $\leq 275^{\circ}$ F or
- Production at least 30°F less than HMA

SPS-10 Supplemental Sections

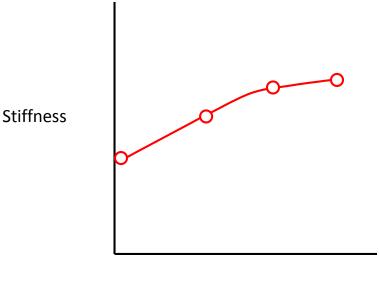
- Agencies can build additional test sections that will be monitored as part of the LTPP program
 - Varying levels of RAP
 - Additional WMA technologies
 - Layer thickness variation
 - Open or gap graded mixtures
 - Varying aggregate sources/absorption levels
 - Other variables of interest to Agency

SPS-10 MaterialsTesting Goals

Investigate changes in WMA performancerelated properties during initial aging period

- What are these properties after initial aging
- When do they stabilize
- How can we predict them from initial state
- Provide inputs for MEPDG modeling
 - Must include existing pavement layers

Provide data set for the development of future models



SPS-10 Focus on Cores

- Tracking changes in properties under field conditions requires field-aged specimens
- Potential bias between field specimens and laboratorycreated specimens and test procedures means cores are required even for initial round of testing

SPS-10 Tests on Experiment Layer

- Dynamic Modulus Smallscale AMPT (TP 79)
 - -0, 3-6, 12 and 18 months after construction
- 38 mm diameter x 110 mm height specimens
 - Re-cored horizontally from
 6" diameter core
 - Otherwise in accordance with AASHTO TP79

SPS-10 Tests on Experiment Layer (cont.)

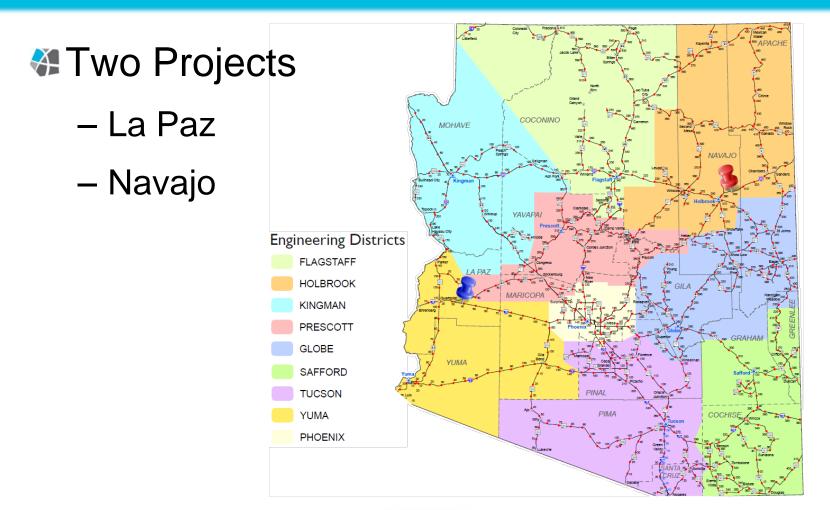
- Binder Testing DSR, BBR, MSCR
 - Tank Binder
 - Extracted binder at 0, 3-6, 12, and 18 months
- Hamburg Wheel Tracker
 - Initial time period only
- Basic Mix Characterization
 - BSG, G_{mm} , P_b , G_{se} , G_b , aggregate gradation

SPS-10 Tests on Existing AC Layers

- Dynamic Modulus Small-scale AMPT (TP 79)
- Binder Testing DSR, BBR, MSCR
- Hamburg Wheel Tracker
- Basic Mix Characterization
 - BSG, G_{mm} , P_b , G_{se} , G_b , aggregate gradation

All tests performed at initial time period only

SPS-10 Tests on Unbound Layers


- Sieve Analysis
- Atterberg Limits
- Classification
- Natural Moisture Content
- Dynamic Cone Penetrometer

Arizona's SPS-10 Projects

La Paz SPS-10

La Paz Site

▲ " Mill and Overlay▲ 2.9 Million ESALs/Yr

10-13" AC/ARAC4" Aggregate Base

Dry-No Freeze

La Paz SPS-10 (cont.)

La Paz SPS-10 (cont.)

Supplemental Test Sections

- Wet Process ARAC, no RAP
- Wet Process ARAC w/ Evotherm, no RAP
- Conventional Fiber Modified (polyolefin, Aramid)
- Evotherm Fiber Modified (polyolefin, Aramid)
- Conventional w/ 30% RAP
- Foaming w/ 30% RAP
- Evotherm w/ 30% RAP

Navajo SPS-10

Navajo Site

4 "Mill and Overlay2.5 Million ESALs/Yr

12-14" AC/ARAC3.5" Aggregate Base

Dry-Freeze 15-20% RAP

Navajo SPS-10 (cont.)

Core Test Sections
 – HMA Control (PG70-22)
 – Foaming

- Evotherm

Navajo SPS-10 (cont.)

Supplemental Test Sections

- Wet Process ARAC, no RAP
- Wet Process ARAC w/ Evotherm, no RAP
- Conventional Fiber Modified (polyolefin, Aramid)
- Evotherm Fiber Modified (polyolefin, Aramid)
- Conventional w/ 30% RAP
- Foaming w/ 30% RAP
- Evotherm w/ 30% RAP

Arizona's SPS-10's Looking Forward

La Paz Timeline Estimate

- Contract Letting: April 2015
- Construction Start: July 2015
- Construction Completion: November 2015
- 🗱 Navajo Timeline Estimate
 - Contract Letting: April 2015
 - Construction Start: June 2015
 - Construction Completion: October 2015

Questions? ksenn@ncenet.com

Thank You!

