

Asphalt Binder Characteristics Affecting Durability Cracking

Mike Anderson

11th Arizona Pavements/Materials Conference November 19-20, 2014 Tempe, AZ

- asphalt institute
- TPF-5(153) Optimal Timing of Preventive Maintenance for Addressing Environmental Aging in Hot-mix Asphalt Pavements
 - MN, MD, OH, TX, WI, LRRB
 - Thomas J. Wood, Lead Agency Contact
- Airfield Asphalt Pavement Technology Program (AAPTP) Project 06-01
 - Techniques for Prevention and Remediation of Non-Load-Related Distresses on HMA Airport Pavements
 - AAPTP sponsors and research panel
- Member Companies of the Asphalt Institute

- Asphalt Institute
- AMEC
 - Doug Hanson, Researcher
- Consultant
 - Gayle King, Researcher

Concept

Year

General Concept

- asphalt institute
- In-service aging leads to oxidation and loss of flexibility at intermediate and low temperatures
 - Block-cracking
 - when environmental (non-load) conditions create thermal stresses that cause strain in the asphalt mixture that exceeds the failure strain

General Concept

- asphalt institute
- In-service aging leads to oxidation and loss of flexibility at intermediate and low temperatures
 - Preventing or mitigating distress
 - identify a property of the asphalt binder or mixture that sufficiently correlates with its flexibility
 - provide a procedure to monitor when flexibility reaches a state where corrective action is needed

Asphalt Durability

- A durable asphalt:
 - has physical properties necessary for desired initial product performance, and
 - is resistant to change in physical properties during long-term, in-use environmental aging

Petersen, J.C., "Chemical Composition of Asphalt as Related to Asphalt Durability-State of-the-Art", TRR. 999, 1984

Asphalt Oxidation

Vallerga: Age-Embrittlement

Raveling

Block Cracking

Witczak and Mirza: Global Aging Model (1995)

- Physical Changes Ductility
 - Block cracking severity related to ductility at 60°F (15°C) – Kandhal (1977)
 - "Low-Temperature Ductility in Relation to Pavement Performance", ASTM STP 628, 1977
 - Loss of surface fines as ductility = 10 cm
 - Surface cracking when ductility = 5 cm
 - Serious surface cracking when ductility < 3 cm

1981 CA Durability Study

Kemp, et.al. Sacramento (62.9C), 7-9% Air Voids, Non-Absorptive Aggregate

Rate of Aging (Normalized – Original)

More Recent Aging Research

- Texas A&M Research (Glover, et.al.)
 - 2005
 - "Development of a New Method for Assessing Asphalt Binder Durability with Field Evaluation"
 - Build on work by Kandhal suggesting block cracking and raveling is related to low binder ductility after aging
 - Identified rheological parameter related to ductility

Dynamic Shear Rheometer

- Mastercurve at 15°C
 - 8-mm parallel plate
 - 5, 15, and 25°C
 - Frequency sweep (0.1 to 100 rad/s)
 - Obtain Texas A&M parameter at 0.005 rad/s
 - G'/(η'/G')
 - Related to ductility at 15°C and 1 cm/min.

Ductility and DSR Parameter

AAPTP 06-01

- Lab Study
 - Asphalt Binder Study
 - Various aged conditions
 - Asphalt Mixture Study
 - Various aged conditions
- Field Study
 - Limited validation of lab findings
 - Asphalt binder and mixture tests

- Three asphalt binders representing different expected aging characteristics
 - Selected based upon the relative relationships between low temperature stiffness (S) and relaxation (m-value)
 - West Texas Sour (PG 64-16)
 - 3.1°C m-controlled
 - Gulf Southeast (PG 64-22)
 - 1.3°C m-controlled
 - Western Canadian (PG 64-28)
 - 0.6°C S-controlled

BBR: Gulf-Southeast (GSE)

Mastercurve Procedure

asphalt institute

G'/(η'/G') at 15°C, 0.005 rad/s (MPa/s)

asphalt institute

Difference Between Tc,S(60) and Tc,m(60), °C

WTX 🔶 GSE 🔶 WC

Relationship between G'/(η'/G') and $\Delta T_{Gasphalt institute}$

Effect of Aging

$$G' / (\frac{n'}{G'}) = G^* \omega((\cos \delta)^2 / \sin \delta)$$

	Ductility 15C, 1 cm/min	Glover-Rowe 0.005 rad/sec
Damage Onset: Early Raveling	5	180 kPa
Damage Visible: Surface cracking	3	600 kPa

asphalt institute

Rowe: Prepared Discussion to M. Anderson paper - AAPT 2011

Glover-Rowe Plot in Black Space: DSR on Aged Binders (15°C; 0.005 rad/s)

Rowe: Prepared Discussion to M. Anderson paper - AAPT 2011

- Three general aviation (GA) airport projects representing four in-service pavements
 - Roundup (Montana)
 - Upper layer representing the new pavement (Roundup Top)
 - Lower layer representing the older pavement (Roundup Bottom)
 - Clayton (New Mexico)
 - Some low-severity longitudinal cracking and raveling
 - Conchas Lake (New Mexico)
 - Some low-to-moderate severity raveling was identified over most of the paved area
 - Pavement surface appeared slightly oxidized

Relationship between G'/(η'/G') and ΔT_c (with Field Cores)

Difference Between Tc,m(60) and Tc,S(60), °C

- West Texas Sour
- Gulf Southeast
- Western Canadian
- O Recovered

Summary – AAPTP 06-01 Research

- Past research
 - Some relationship between ductility (conducted at an intermediate temperature) and the durability of an asphalt pavement
 - Texas A&M research validated through identification of DSR parameter, G'/(η'/G'), at 15°C and 0.005 rad/s

Summary – AAPTP 06-01 Research

- Current research
 - Confirmed relationship of Texas A&M DSR parameter, G'/(η'/G'), at 15°C and 0.005 rad/s, to ductility
 - Identified similar parameter through BBR testing, ΔTc, which quantifies the difference in continuous grade temperature for stiffness and relaxation properties
 - Parameters appear to quantify the loss of relaxation properties as an asphalt binder ages

Summary – AAPTP 06-01 Research

• Field Studies

- Four sections from three GA pavements in Montana and New Mexico
- Findings generally matched the lab studies, with the newer pavements having values of G'/(η'/G') and ΔTc that indicated less aging and more flexibility than the older pavements

Concept

TPF-5(153)

- Laboratory and Field Evaluation of MnROAD and Other Test Sections
 - Critical fracture parameters monitored throughout the life of the pavement
 - Appropriate remedial action can be taken as the critical limit is approached
 - Simple tests to be used for field monitoring purposes
 - physical properties from simple tests correlated to crack predictions from DC(t) or other more sophisticated fracture tests.

MnROAD Low Volume Road

24	33	. 34	35	27	28
3"	4"	4"	4"	2" 52-34	2" 52-34
30-34	PPA	SBS+PPA	SBS	2" 58-34	2" 58-34
4" Class 6				6" Class 5	6" Class 5
Sand	12" Class 6	12" Class 6	12" Class 6	GCBD	
100' Fog Seals				2009 Chip Seal	
2008				7 "	7"
2009				Clay	Clay
2010				Borrow	Borrow
2011	Clay	Clay	Clay		
2012				Clay	Clay
Oct 08	Sep 07	Sep 07	Sep 07	Aug 06	Aug 06
Current	Current	Current	Current	Current	Current

MnROAD Cores: Recovered Binder Testing

- Extraction/Recovery
 - Centrifuge extraction using toluene/ethanol
 - Recovery using Rotavapor
- 2 Cores (150-mm diameter x 12.5-mm thickness)
 - ~50 grams asphalt

MnROAD Cores: Binder Testing

- Each Layer
 - DSR Temperature-Frequency Sweep
 - Three temperatures (5, 15, 25°C) using 8-mm plates

- Rheological master curves for modulus (G*) and phase angle (δ)
- BBR
 - Tc determined to the nearest 0.1°C for S(60) and m(60)
 - Difference in Tc (ΔTc)

MnROAD Cell 24: Effect of Layer Depth

G'/(η'/G') at 15°C, 0.005 rad/s, MPa/s

Witczak and Mirza: Global Aging Model (1995)

Binder Testing

- Linear Amplitude Sweep (LAS) Test
 - DSR Test
 - Frequency Sweep (0.1 30 Hz)
 - Continuous Oscillation at 10 Hz with Linearly-Increasing Strain from 0.1 to 30%
 - Viscoelastic Continuum Damage (VECD) analysis to get reduction in G*sin δ
 - Cycles to failure as a function of strain

$$N_f = A\gamma^B$$

LAS Strain Sweep

Aging as a Function of Depth and Time: LAS Slope (B)

Aging as a Function of Depth and Time: LAS N_f (2%)

Effect of Aging (Conceptual)

Summary

- Effects of Aging
 - Increase stiffness
 - Decrease flexibility

• Surface Cracking

Thanks!

R. Michael (Mike) Anderson, P.E. Director of Research and Laboratory Services Asphalt Institute 2696 Research Park Dr. Lexington, KY 40511-8480 859.288.4984 office 859.422.1301 FAX manderson@asphaltinstitute.org www.asphaltinstitute.org