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General Concept

• In-service aging leads to oxidation and loss of 
flexibility at intermediate and low 
temperatures

• Block-cracking
• when environmental (non-load) conditions 

create thermal stresses that cause strain in the 
asphalt mixture that exceeds the failure strain



General Concept

• In-service aging leads to oxidation and loss of 
flexibility at intermediate and low 
temperatures

• Preventing or mitigating distress
• identify a property of the asphalt binder or 

mixture that sufficiently correlates with its 
flexibility

• provide a procedure to monitor when flexibility 
reaches a state where corrective action is 
needed



Asphalt Durability

• A durable asphalt: 
• has physical properties necessary for desired initial 

product performance, and
• is resistant to change in physical properties during 

long-term, in-use environmental aging 

Petersen, J.C., “Chemical Composition of Asphalt as Related to Asphalt 
Durability-State of-the-Art”, TRR. 999, 1984 



Asphalt Oxidation

Vallerga: Age-Embrittlement

Raveling Block Cracking



Witczak and Mirza: Global Aging Model (1995)

D
epth

Stiffness



Asphalt Oxidation

• Physical Changes – Ductility
• Block cracking severity related to ductility at 60ºF 

(15ºC) – Kandhal (1977)
• “Low-Temperature Ductility in Relation to Pavement 

Performance”, ASTM STP 628, 1977
• Loss of surface fines as ductility = 10 cm
• Surface cracking when ductility = 5 cm 
• Serious surface cracking when ductility < 3 cm



1981 CA Durability Study
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Rate of Aging
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Rate of Aging (Normalized – Original)
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More Recent Aging Research

• Texas A&M Research (Glover, et.al.)
• 2005
• “Development of a New Method for Assessing 

Asphalt Binder Durability with Field Evaluation”
• Build on work by Kandhal suggesting block 

cracking and raveling is related to low binder 
ductility after aging

• Identified rheological parameter related to 
ductility



Dynamic Shear Rheometer

• Mastercurve at 15°C
• 8-mm parallel plate
• 5, 15, and 25°C
• Frequency sweep (0.1 to 

100 rad/s)
• Obtain Texas A&M 

parameter at 0.005 rad/s
• G′/(η′/G′)
• Related to ductility at 

15°C and 1 cm/min.



Ductility and DSR Parameter

(Glover et.al., 2005)



AAPTP 06-01

• Lab Study
• Asphalt Binder Study

• Various aged conditions
• Asphalt Mixture Study

• Various aged conditions
• Field Study

• Limited validation of lab findings
• Asphalt binder and mixture tests



Asphalt Binders

• Three asphalt binders representing different 
expected aging characteristics

• Selected based upon the relative relationships 
between low temperature stiffness (S) and 
relaxation (m-value)

• West Texas Sour (PG 64-16)
• 3.1°C m-controlled

• Gulf Southeast (PG 64-22)
• 1.3°C m-controlled

• Western Canadian (PG 64-28)
• 0.6°C S-controlled



BBR: Gulf-Southeast (GSE)
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Effect of PAV Aging Time on ∆Tc
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Mastercurve Procedure

y = 0.035x -0.670

R² = 0.853
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Relationship between ∆Tc and Ductility

y = 7.77e-0.27x

R² = 0.74
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Relationship between G′/(η′/G′) and ∆Tc
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Effect of Aging
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Glover-Rowe Parameter

Rowe:  Prepared Discussion to M. Anderson paper - AAPT 2011

Ductility
15C, 1 cm/min

Glover-Rowe
0.005 rad/sec

Damage Onset:
Early Raveling

5 180 kPa

Damage Visible:
Surface cracking

3 600 kPa

Gʹ / (   ) = G*ω((cos δ)2/ sin δ)ηʹ
Gʹ



Rowe:  Prepared Discussion  to M. Anderson paper - AAPT 2011 
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Field Validation

• Three general aviation (GA) airport projects 
representing four in-service pavements

• Roundup (Montana)
• Upper layer representing the new pavement (Roundup 

Top)
• Lower layer representing the older pavement (Roundup 

Bottom)
• Clayton (New Mexico)

• Some low-severity longitudinal cracking and raveling 
• Conchas Lake (New Mexico)

• Some low-to-moderate severity raveling was identified 
over most of the paved area

• Pavement surface appeared slightly oxidized



Relationship between G′/(η′/G′) and ΔTc 
(with Field Cores)
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Summary – AAPTP 06-01 Research

• Past research
• Some relationship between ductility (conducted at 

an intermediate temperature) and the durability of 
an asphalt pavement

• Texas A&M research validated through 
identification of DSR parameter, G′/(η′/G′), at 15°C 
and 0.005 rad/s



Summary – AAPTP 06-01 Research

• Current research
• Confirmed relationship of Texas A&M DSR 

parameter, G′/(η′/G′), at 15°C and 0.005 rad/s, to 
ductility

• Identified similar parameter through BBR testing, 
ΔTc, which quantifies the difference in continuous 
grade temperature for stiffness and relaxation 
properties

• Parameters appear to quantify the loss of 
relaxation properties as an asphalt binder ages



Summary – AAPTP 06-01 Research

• Field Studies
• Four sections from three GA pavements in 

Montana and New Mexico
• Findings generally matched the lab studies, with 

the newer pavements having values of G′/(η′/G′) 
and ΔTc that indicated less aging and more 
flexibility than the older pavements
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TPF-5(153)

• Laboratory and Field Evaluation of MnROAD 
and Other Test Sections

• Critical fracture parameters monitored throughout 
the life of the pavement

• Appropriate remedial action can be taken as the critical 
limit is approached

• Simple tests to be used for field monitoring 
purposes

• physical properties from simple tests correlated to 
crack predictions from DC(t) or other more 
sophisticated fracture tests.



MnROAD Low Volume Road



MnROAD Cell 24
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MnROAD Cores: Recovered Binder Testing

• Extraction/Recovery
• Centrifuge extraction 

using toluene/ethanol
• Recovery using 

Rotavapor

• 2 Cores (150-mm 
diameter x 12.5-mm 
thickness)

• ~50 grams asphalt

12.5-mm

Mid (B)
Top (A)

Bottom (C)



MnROAD Cores: Binder Testing

• Each Layer
• DSR Temperature-Frequency Sweep

• Three temperatures (5, 15, 25°C) using 8-mm 
plates

• Rheological mastercurves for modulus (G*) and 
phase angle (δ)

• BBR
• Tc determined to the nearest 0.1°C for S(60) and m(60)
• Difference in Tc (ΔTc)



MnROAD Cell 24: Effect of Layer Depth
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Witczak and Mirza: Global Aging Model (1995)
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Binder Testing

• Linear Amplitude Sweep (LAS) Test
• DSR Test

• Frequency Sweep (0.1 – 30 Hz)
• Continuous Oscillation at 10 Hz with Linearly-Increasing 

Strain from 0.1 to 30%
• Viscoelastic Continuum Damage (VECD) analysis to get 

reduction in G*sin δ
• Cycles to failure as a function of strain

Nf = AγB



LAS Frequency Sweep
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LAS Strain Sweep
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Aging as a Function of Depth and Time:
LAS Slope (B)
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Aging as a Function of Depth and Time:
LAS Nf (2%)
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Effect of Aging (Conceptual)
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MnROAD Cell 24: Aging Profile
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Summary

• Effects of Aging
• Increase stiffness
• Decrease flexibility

• Surface Cracking
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