Investigation of Very Wide Cracks

John Shi, PhD, PE Materials Engineer MCDOT

Gant Yasanayake, PhD, PE Pavement Design Engineer MCDOT

Arizona Pavements/Materials Conference

What is a Very Wide Crack?

- 2 inches or more wide cracks are considered very wide cracks
- Categorized as a durability crack
- May be referred to as a working crack
- May start as a transverse thermal crack

Arizona Pavements/Materials Conference

Sites with Very Wide Cracks Maricopa County Roads

Sun Valley Parkway North of McDowell Road Anthem Way West of Independence Way **12th Street** North of Circle Mountain Rd

Width = 7 inches Age = 21 years Width = 4 inches Age = 13 years Width = 2.5 inches Age = 9 years

Arizona Pavements/Materials Conference

Examples of Very Wide Cracks Non-County Pavements

West of 80th Street

Highway 89

Near Mile Post 458

Private Parking Lot

Gilbert, AZ

Arizona Pavements/Materials

Sites with No or Little Cracks Maricopa County Roads

Ellsworth Road North of Germann Road Ellsworth Road South of McLellan Road **Gilbert Road** North of Thomas Road

Width = 1/8 in. Age = 8 years Width = 1/8 in. Age = 10 years Width = 1/8 in. Age = 9 years

Issues with Very Wide Cracks
 Difficult to crack seal—conventional crack seal material will not work

- High maintenance cost—if crack sealed, need frequent applications until it is not feasible any more
- Cracking continues—even other pavement preservations (overlay, rubber chip-seal) do not stop or slow down the cracking
- Subgrade may fail—may occur due to moisture penetration
- Hazardous to motorists—specially to cyclists and motorcyclists

Unpleasant ride—noisy and bumpy

Arizona Pavements/Materials Conference

Very Wide Cracks—Observations

- Loss of volume—pavement loses significant amount of volume over the years
- Amount of volume loss—1% volume loss was estimated for pavements with cracks of 4" mean width appearing every 40 feet
- Average spacing of cracks—35 to 45 feet
- Lateral contraction—pavement separates even at gutters
- Crack width increases with time—no preservation method would stop the progress

Mechanisms of Very Wide Cracks

Known Factors Causing Volume Change

Thermal Contraction and Expansion of pavement materials

MaterialThermal Expansion Coefficient, α Aggregates 5.0×10^{-6} in / in / °FBinder 1.0×10^{-4} in / in / °FAC Mix 1.3×10^{-5} in / in / °F

Change in Air Voids—no internal stresses induced

 Evaporation and Oxidization—binder evaporates and oxidizes over time and causes volume loss

Investigation of Very Wide Cracks—Main Focus

- Main focus was given to the aggregate matrix
- Focused on aggregate interlocking
- Evaluated the nature of the mix used in the investigated pavements
- Attempted to answer the question:
 If a mix had good aggregate interlocking would that prevent cracking, or conversely,
 if a mix had poor aggregate interlocking would the pavement see more cracking?

Arizona Pavements/Materials Conference

- The coarse aggregate (CA) interlocking was determined based on the Loose Unit Weight (LUW) concept in Bayley Method for AC mix design
- In Bayley Method, the interlocking is quantified as the ratio of volume of course aggregate in the AC mix to the volume of coarse aggregate when loosely packed
- This ratio is identified as Degree of Interlocking (DOI) for the purpose of this study

Note: In Bayley Method DOI is referred to as % CA LUW

Arizona Pavements/Materials Conference

Investigation of Very Wide Cracks—MethodologyDOIMix TypeMatrix< 85%</td>Fine-GradedSolution

95% to 105% Coarse-Graded

> 105%

Stone Matrix

Arizona Pavements/Materials Conference

Collect AC Core Samples from selected sites

Perform binder and aggregate testing in the lab

Determine DOI based on LUW

Analyze DOI with respect to pavement crack width

Check for any other noticeable factors affecting crack width

Collect AC Core Samples from selected sites

- Altogether, six sites were selected
- Three sites with very wide cracks:
 - **SV** Sun Valley Parkway north of McDowell
 - AW Anthem Way west of Independence Way
 - **TS 12th Street north of Circle Mountain Road**
- Three sites with no (or small) AC cracks
 - EG Ellsworth Road north of Germann
 - **EM** Ellsworth Road south of McClellan
 - **GR** Gilbert Road north of McDowell

Collect AC Core Samples from selected sites

At each site, three locations (A, B, and C) representing cracked areas were selected

 Four 10-inch diameter cores were collected from each location

Location B	
$\bigcirc \bigcirc \bigcirc \bigcirc$	Ô
B1 B2 B3	B4
Location A	Location C
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
A1 A2 A3 A4	C1 C2 C3 C4

Collect AC Core Samples from selected sites

Coring Gilbert Road Site

Arizona Pavements/Materials

November 19-20, 2014

Perform binder and aggregate testing in the lab

- Binder Testing:
 - Bulk Specific Gravity
 - Maximum Theoretical Specific Gravity (Rice)
 - Asphalt Binder Content
- Aggregate Testing:
 - Sieve Analysis of Aggregates
 - Loose Unit Weight (LUW) of Coarse Aggregates
 - LA Abrasion on Coarse Aggregates
- Calculations based on Test Results:
 - Determination of voids in the mix
 - Determination of Primary Control Sieve (PCS)
 - Determination of Degree of Interlocking (DOI)

Arizona Pavements/Materials Conference

Determine DOI based on LUW

Determine DOI based on LUW

PCS — Primary Control Sieve

PCS = 0.22 D
 where D = NMAS
 (from Bailey Method)

 PCS is the size that divides coarse aggregates from fine aggregates

Void Size for All Round Particles

Average Void Size for Aggregate Particles

0.22 D

Arizona Pavements/Materials Conference

on LUW

Vol. of CA in 1 ft³ of mix

Wt. of 1 ft³ of mix (lbf) based on bulk specific gravity, G_{mb}

Wt. of binder in 1 ft³ of mix (lbf) based on binder content, b%

$$= W_1 = G_{mb} \gamma_w$$
unit weight of water

 $= W_2 = bW_1/100$

Wt. of fine & coarse aggregates in 1 ft³ of mix (lbf) = $W_3 = W_1 - W_2$ based on W_1 and W_2

Wt. of coarse aggregates in 1 ft³ of mix (lbf) based on % retained on PCS, p%

Vol. of coarse aggregates in 1 ft³ of mix (ft³) based on W_{c4}

Arizona Pavements/Materials Conference November 19-20, 2014 ASU $= W_{c} = pW_{3}/100$

Investigation of Very Wide Cracks—Methodology Determine DOI based on LUW Vol. of CA based on LUW

Wt. of coarse aggregates in the mold (lbf) $= W_{L1}$ based on loosely placed CA in modified Proctor mold

Loose Unit Weight of Coarse Aggregates (lbs/ ft³) = LUW = $13.33W_{L1}$ based on W_{L1} and volume of the mold, 1/13.33 ft³

Wt. of CA in 1 ft³ when in loose condition (lbf) $= W_L = LUW$ based on LUW

Vol. of CA when in loose condition (ft^3) based on W_L , which is actually LUW

 $= V_{L} = W_{L} / \gamma_{s}$ unit weight of solids

Determine DOI based on LUW

DOI based on LUW

Vol. of CA in 1 ft³ of mix, V_c Vol. of CA based on LUW, V_L - X 100 DOI = $\frac{W_{c} / \gamma_{S}}{W_{L} / \gamma_{S}}$ W_c

2

Arizona Pavements/Materials Conference

Determine DOI based on LUW

DOI based on LUW

Fine Graded Mix

AC Sample

Arizona Pavements/Materials Conference

Determine DOI based on LUW

DOI based on LUW

Fine Graded Mix

Binder Removed

Determine DOI based on LUW

DOI based on LUW

Fine Graded Mix

Fine Aggregates Removed

Arizona Pavements/Materials Conference

Determine DOI based on LUW

DOI based on LUW

Coarse Graded Mix

AC Sample

Arizona Pavements/Materials Conference

Determine DOI based on LUW

DOI based on LUW

Coarse Graded Mix

Binder Removed

Determine DOI based on LUW

DOI based on LUW

Coarse Graded Mix

Fine Aggregates removed

Arizona Pavements/Materials Conference

Analyze DOI with respect to pavement crack width

DOI 78%

Analyze DOI with respect to pavement crack width

DOI 72%

Analyze DOI with respect to pavement crack width

100 90 3/4" 80 70 1/2" 60 TOP Layer • Percent Passing 3/8" 50 40 30 3/4-inch Specs 20 #200 Restricted Zone #8 10 —AW Top Average 0 1.0 0.0 2.0 3.0 4.0 D0.45

DOJ 60%

Analyze DOI with respect to pavement crack width

100 90 3/4" 80 70 1/2" 60 Bottom **Percent Passing** 3/8" 50 40 Layer 3/4-inch Specs 30 Restricted Zone 20 #8 #200 10 -AW Bottom Average 0 0.0 1.0 2.0 3.0 4.0 D^{0.45}

DOJ 90%

Analyze DOI with respect to pavement crack width

Analyze DOI with respect to pavement crack width

Analyze DOI with respect to pavement crack width

100% EN 90% 80% 70% 60% Top Layer Percent Passing 50% 40% 30% #40 #8 20% #200.. 10%

DOI 104%

Arizona Pavements/Materials Conference

Analyze DOI with respect to pavement crack width

DOI 79%

Arizona Pavements/Materials Conference

Analyze DOI with respect to pavement crack width

DOI 101%

Analyze DOI with respect to pavement crack width

DOI 98%

Analyze DOI with respect to pavement crack width

Site >		SV	AW		TS	EG		EM		GR	
Asph	alt layer >	Single Layer	Тор	Bottom	Single layer	Тор	Bottom	Тор	Bottom	Тор	Bottam
Average Asphalt Thickness	inches	4.7	2.0	2.0	2.7	2.5	3	1.5	4	2.5	3
Thickness of AB	inches	10	10		NA	9		7.5		11.5	
Bulk Specific Gravity		2.337	2.333	2.329	2.362	2.471	2.445	2.213	2.327	2.366	2.364
Air Voids	%	5.35	5.50	6.72	4.76	4.99	6.00	5.33	4.15	4.57	3.75
Binder Content by weight	%	6.03	6.41	5.25	6.22	5.18	5.16	8.14	5.12	4.66	5.28
Nominal aggregate size	inches	3⁄4	3⁄4	3⁄4	1/2	3⁄4	3⁄4	1/2	3/4	1/2	1/2
Primary Control Seive (PCS)	#	#4	#4	#4	#8	#4	#4	#8	#4	#8	#8
Percent Retained on PCS	%	49	40	61	54	53	55	74	50	67	65
LUW	pcf	92.8	91.4	92.8	95.2	93.0	91.9	90.1	87.3	92.9	92.8
DOI	%	72	60	90	78	83	87	104	79	101	98
DOI (Average)	%	72	75		78	85		91.5		99.5	
Age of Maximum Crack	years	21	13		9	8		10		9	
Maximum Crack Width	inches	7.0	4.0		2.5	0.125		0.125		0.125	
Normalized Crack Width	inches	3.33	3.08		2.78	0.16		0.13		0.14	
LA Abration (500-Rev)	%	38	33	20	23	19	20	28	26	20	19
Shape of Aggregates		SRnd	SRnd	SRnd	SRnd	Ang	Ang	Ang	Ang	Ang	Ang

- Sub-Rounded
- Some particles crumble easily

- Sub-Rounded
- Some fracture faces
- Some Sub-Rounded particles
- Some fracture faces

Angular particles

- Angular particles
- Angular particles

- Very high fracture faces
- Very high fracture faces

High fracturefaces

Analyze DOI with respect to pavement crack width

Normalized Crack Width

Maximum crack width was normalized for 10-year period based on the age of the crack

Analyze DOI with respect to pavement crack width

Check for any other noticeable factors affecting crack width

Arizona Pavements/Materials Conference

Summary of Findings

- 1. Coarse-Graded or Mid-Graded Pavements:
 - DOI > 85%
 - performed satisfactorily
 - exhibited only minor durable cracks
- 2. Fine-Graded Pavements:
 - DOI < 85%</p>
 - performed unsatisfactorily
 - exhibited very wide durable cracks
- 3. Restricted Zone Comparison
 - Fine-Graded mixes plotted above the Restricted Zone
 - Coarse- or Mid-Graded mixes plotted below the Restricted Zone
- 4. Mixes with high angularity coarse aggregates:
 - perform better even with relatively low DOI
 - coarse aggregates with less angularity in mixes may exhibit prone to cracking if DOI is low

Arizona Pavements/Materials Conference

References

- 1. Superpave Mix Design, Superpave No. 2 (SP-2), Asphalt Institute, 3rd Edition 2001
- 2. An Introduction to the Bailey Method for Achieving Volumetrics and HMA Compatibility, Asphalt Institute, Mark D. Blow, PE and Robert P. Humer, PE, April 2007
- 3. Bailey Method for Gradation Selection in Hot-Mix Asphalt Mixture Design, Transportation Research Circular, Transportation Research Board, Number E-C044, October 2002
- Investigation of the Bailey Method for the Design and Analysis of Dense-Graded HMAC Using Oregon Aggregates, Final Report, SPR 304-311, Asphalt Pavement Association of Oregon, Gary Thompson, PE, September 2006

Acknowledgements

1. MCDOT CMT Laboratory staff

2. MCDOT Traffic Operations

3. Kleinfelder

4. City of Mesa

THANKS !

