"An Overview of Pavement Durability Cracking Distress in Pavement Systems" by Dr.M.W.Witczak

Emeritus Professor University of Maryland Emeritus Professor Arizona State University Partner, ZW Consultants LLC

11th Arizona Pavements/Materials Conference

19-20 November 2014 Phoenix, Arizona

AASHTO MEPDG DESIGN GUIDE PROCEDURE

AASHTO MEPDG Predicted Distresses

Longitudinal Cracking

3

ZW Consultants LLC

Thermal

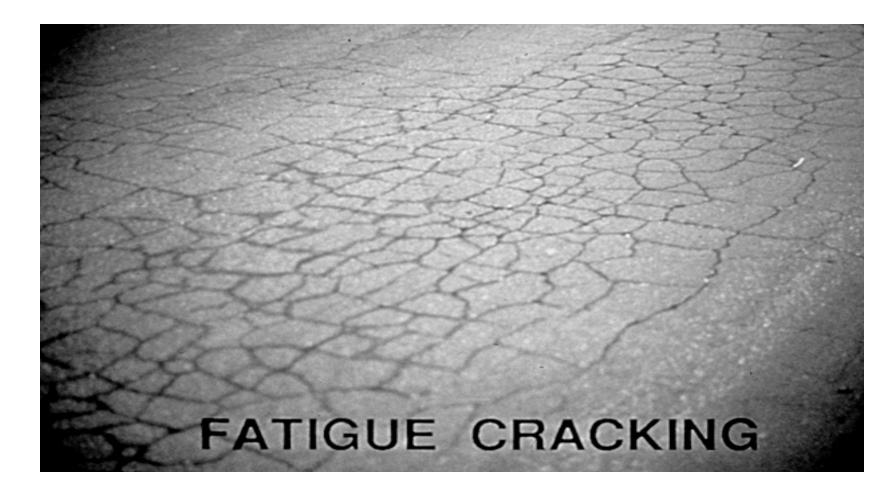
Cracking

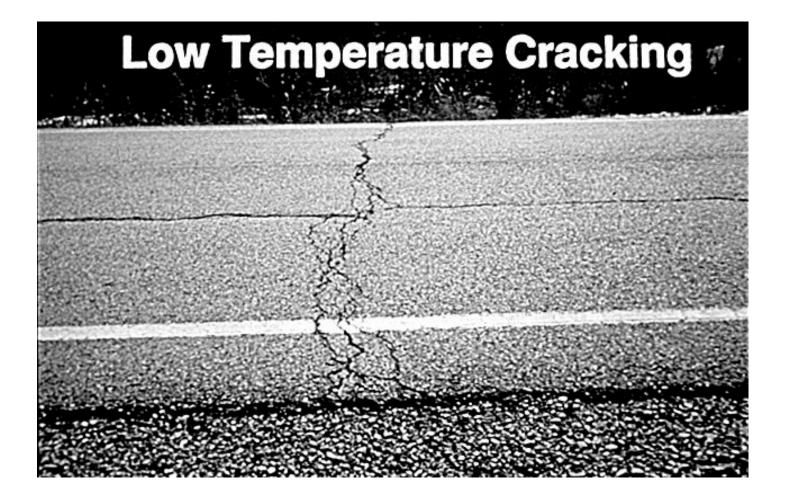
atique

ackin

Rutting

IRI


What a 2 Billion ESAL Highway Looks Like (Before Opened To Normal Traffic)

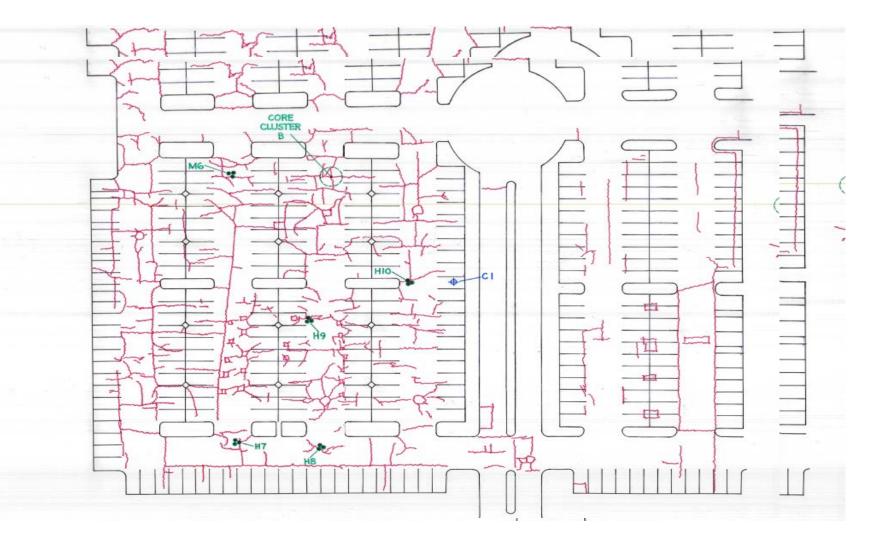

Severely Rutted Pavement!!

Severely Fatigue Cracked

Thermal Cracking

HMA Cracking Due To Durability / Shrinkage

Durability Cracking in Residential Streets



Durability Cracking in Residential Streets

Durability Cracking in Parking Lot Pavements

The Impact Of Top Down Durability Cracking May Lead To:

Full Destruction of Load Carrying Ability of Pavement Structure

- The Profession currently has a <u>Much Better</u> Technical Level of Understanding / Design Methodologies to Accommodate:
 - Pavement Rutting
 - Fatigue Cracking
 - Thermal Fracture

Compared to our Understanding and Ability to Eliminate Durability Cracking

- There is <u>NO</u> Difference in the Future Performance of a Pavement System Possessing Full Depth Cracking Caused By:
 - Structural (Load) Induced Cracking OR
 - Durability (Non Load) Induced Cracking

Both Cracking Forms <u>Destroy</u> the Structural Integrity of the Pavement System and Will Lead to the Necessity to Have Major Reconstruction of the Entire Pavement Structure

- Major Causes of Durability Cracking
 - Mix Design / Construction Considerations (eg Low AC% / High Va%)
 - Construction Related Issues
 - Excessive Short Term Binder Stiffness (Gb*)
 - Lack of Specification for Actual In-Situ Binder Stiffness

- All Durability Distress is Greatly Enhanced in Frequency and Severity through Extremely Abnormal Environmental Conditions of:
 - High Annual Temperatures and /or
 - High Annual Rainfall

Some Fundamentals of Mix Design Practice

Fundamental World Philosophy of Asphalt Mixture Design

 – "Always Use as Much Asphalt as the Mix will Tolerate and still be Stable to Resist Rut Deformation and Shear"

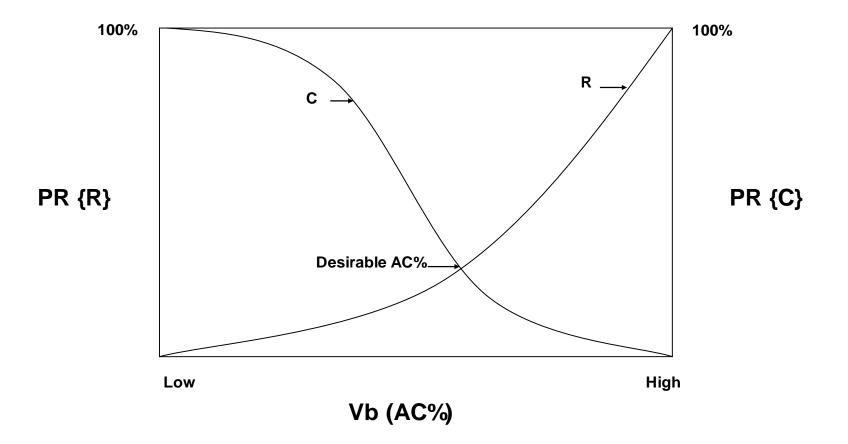
Contributing Mix Factors of Distress

• AC Distress Modes

- Moisture Susceptibility
- Raveling
- Thermal Fracture
- Alligator Fatigue Fracture
- Fracture
- Block Cracking
- Ageing

– Longitudinal Fatigue

Major Contributing **Factors**


- Low Vb (AC%)
- High Va%

Contributing Mix Factors of Distress

- AC Distress Modes
 - Rutting
 - Shoving

- Major Contributing Factors
 - High Vb (AC%)
 - Low Va%

Impact of Vb (AC%) Upon Distress

Principle of TAI MS-2 Mix Design Procedure

- TAI Marshall followed process of classical, historical USACE procedure until approximately 15+ years ago
- At that time , an important addition to the procedure was made by TAI.
- It added a minimum Vb criteria to ensure that enough asphalt was always added to the mix to properly coat all aggregate particles with the proper film thickness to resist common durability problems associated with
 - » Moisture Susceptibility (Stripping)
 - » Raveling
 - » Excessive Field Aging
 - » Significantly Enhance Fracture Resistance of Mix

TAI MS-2 Minimum Vb

- Min VMA @ Va% (Selected in Marshall)

– Dnom	Va=3	Va=4	Va=5
- #4	16	17	18
- 1/2"	13	14	15
— ¾″	12	13	14
- 1 "	11	12	13
- 1½"	10	11	12
- 2 "	9.5	10.5	11.5

TAI MS-2 Minimum Vb

-Recognize Vb(min)= VMA(min)-Va

– Dnom	Va=4	Va=6	Va=8	
- #4	13	13	13	
- 1/2"	10	10	10	
— ³ /4"	9	9	9	
- 1 "	8	8	8	
- 1½"	7	7	7	
- 2"	6.5	6.5	6.5	

First Major Conclusion

-Regardless of Va Selected in Marshall -Min Vb = f(Dnom)

» Dnom	MinVb	
#4	13	
» 1/2 "	10	
» 3⁄4″	9	
» 1″	8	
»1½″	7	
» 2″	6.5	

Second Major Conclusion

- Since VMA=Va + Vbeff - Min VMA = f(Dnom & Va Marshall))

	»	Min V	/MA for VA%	Marshall
– Dnom	MinVb	Va=4%	Va=6%	Va=8%
- #4	13	17	<i>19</i>	21
- ½"	<i>10</i>	14	<i>16</i>	<i>18</i>
- ³ /4"	9	<i>13</i>	15	17
-1"	8	12	14	<i>16</i>
- 1 ½"	7	11	13	15
- 2"	6.5	10.5	12.5	<i>14.5</i>

Third Major Conclusion

-Min Vfa = f(Dnom & Va-Marshall)

»		Min Vfa @ V	a% Selected in	ected in Marshall	
– Dnom	MinVb	Va=4%	Va=6%	Va=8%	
- # 4	13	77	<i>69</i>	62	
- 1/2"	<i>10</i>	71	<u>63</u>	56	
— ³ /4"	9	69	<i>60</i>	53	
- 1"	8	67	58	51	
- 1 ½"	7	64	55	47	
- 2"	6.5	<u>62</u>	52	<i>45</i>	

INTRODUCTION OF THE AC MIX DESIGN WINDOW

TYPICAL AC SPECIFICATIONS (MAY OR MAY NOT BE PRESENT)

Mix Properties

- Stability (Min)
- Flow (Min Max)
- Stiffness (Min)**
- Retained Stability (Min)**

Mix Volumetrics

- Va% (Min Max)
- Vma% (Min)
- Vfb% (Min Max)

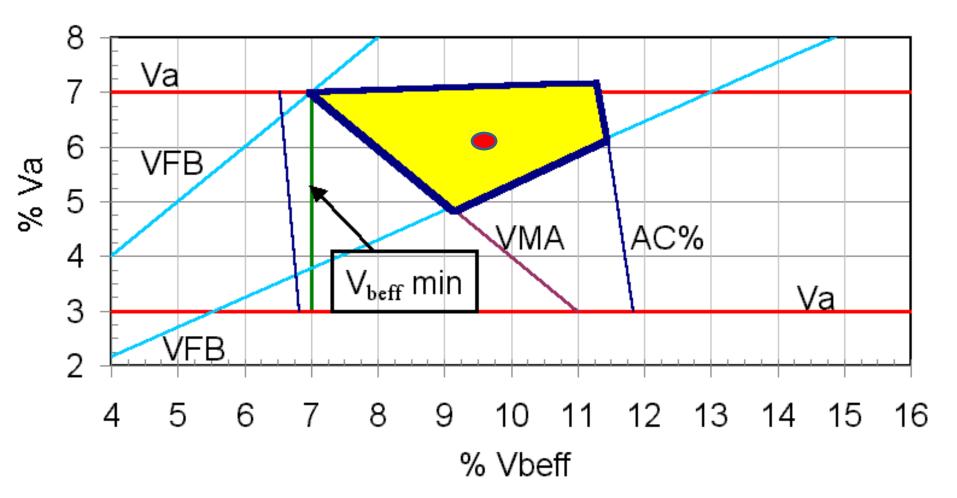
TYPICAL AC SPECIFICATIONS (MAY OR MAY NOT BE PRESENT)

Gravimetric Properties

- AC% (Min Max)**
- Dust/Binder Ratio(Min Max)**
- Knowledge of Gb and Gsb Allows Conversion of Gravimetric to Volumetric Properties

Mandatory to Include TAI MS-2 Criterion

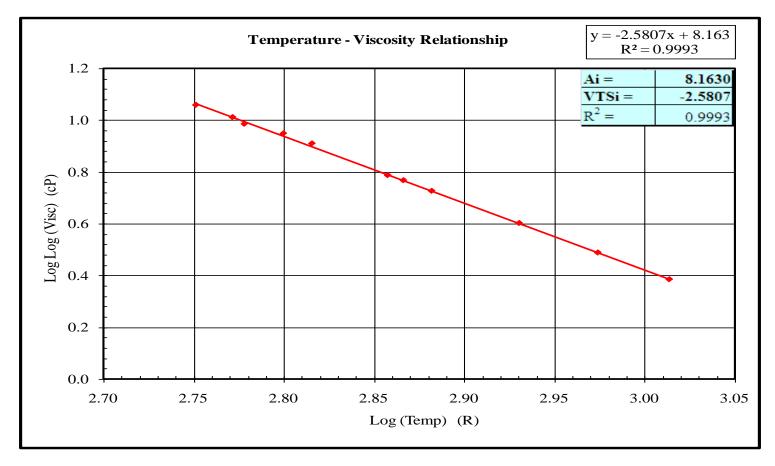
Dnom Controls Vbeff (Min)


Concept of "Mix Design Window"

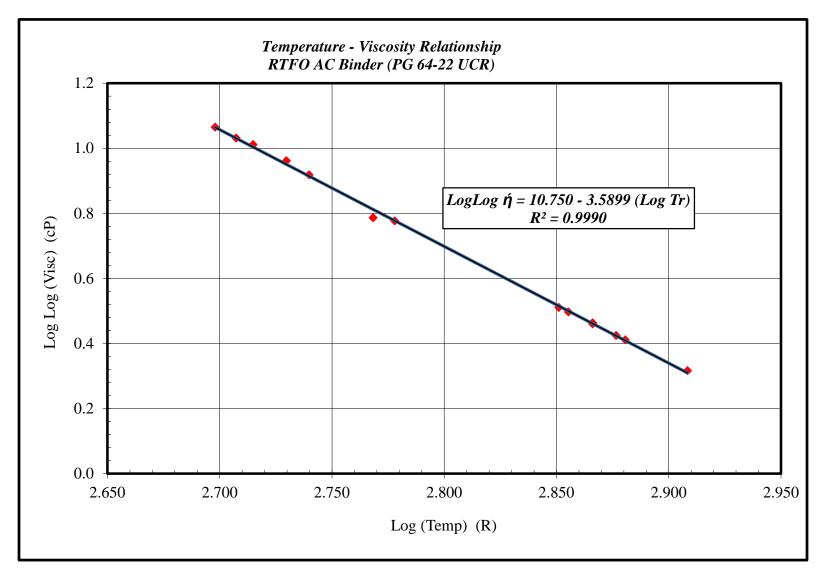
Develop a graphical Picture , called a "MIX DESIGN WINDOW"

Window is Formed by Superimposing all Specification Volumetric Criterion On Plot of :

Vbeff (*x*-axis) and Va% (*y*-axis)


The AC Mix Design Window

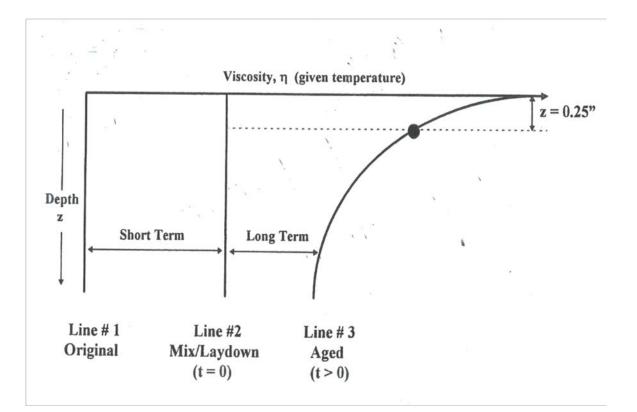
ZW Consultants LLC


IMPACT OF EXCESSIVE HMA MIX (BINDER) AGEING

$ASTM A_{i} - VTS_{i} Viscosity Model$ $log log \eta = A + VTS log T_{R}$

Developing the Ai-VTSi Parameters

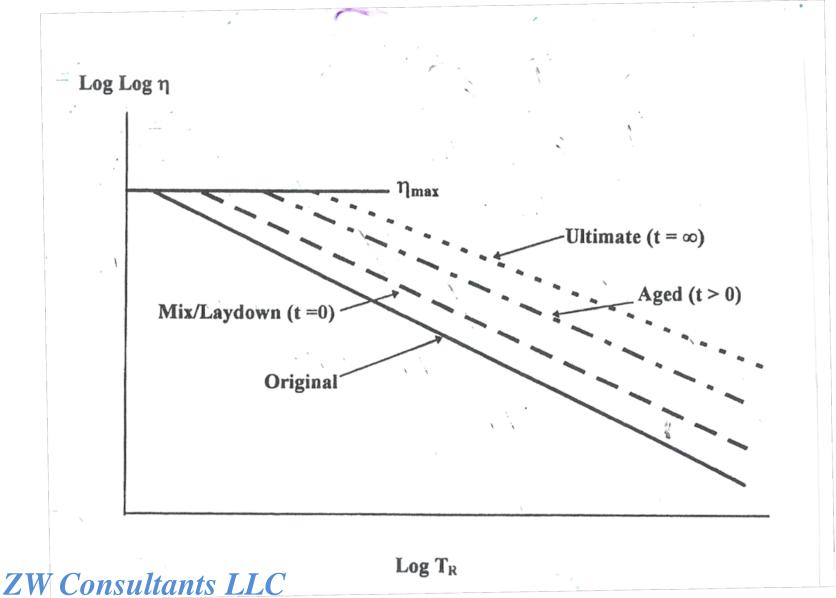
Test	Temp (C)	Temp (F)	Temp (R)	Log Temp (R)	Penetration (.1mm)	Viscosity (Poise)	Viscosity (cP)	LogLog Visc
Penetration	4.0	39.2	498.9	2.698	2.50	4.00E+09	4.00E+11	1.065
Penetration	10.0	50.0	509.7	2.707	6.00	5.56E+08	5.56E+10	1.031
Penetration	15.0	59.0	518.7	2.715	9.90	1.80E+08	1.80E+10	1.011
Penetration	25.0	77.0	536.7	2.730	30.80	1.40E+07	1.40E+09	0.961
Penetration	32.0	89.6	549.3	2.740	74.80	1.90E+06	1.90E+08	0.918
Penetration								
Softening Point, F	52.7	126.9	586.6	2.768		13,000	1.30E+06	0.786
Softening Point, F								
Absolute Visc, P	60.0	140.0	599.7	2.778		<i>9566</i>	9.57E+05	0.777
Absolute Visc, P								
Kinematic Visc, cst	135.0	275.0	734.7	2.866		782.00	8.04E+02	0.463
Kinematic Visc, cst								
Dynamic Visc, cSt	121.1	250.0	709.7	2.851		1690.00	1.74E+03	0.511
Dynamic Visc, cSt	125.0	257.0	716.7	2.855		1338.00	1.38E+03	0.497
Dynamic Visc, cSt	135.0	275.0	734.7	2.866		748.50	7.69E+02	0.460
Dynamic Visc, cSt	145.0	293.0	752.7	2.877		441.40	4.54E+02	0.424
Dynamic Visc, cSt	148.9	300.0	759.7	2.881		369.00	3.79E+02	0.411
Dynamic Visc, cSt	176.7	350.1	809.8	2.908		114.70	1.18E+02	0.316

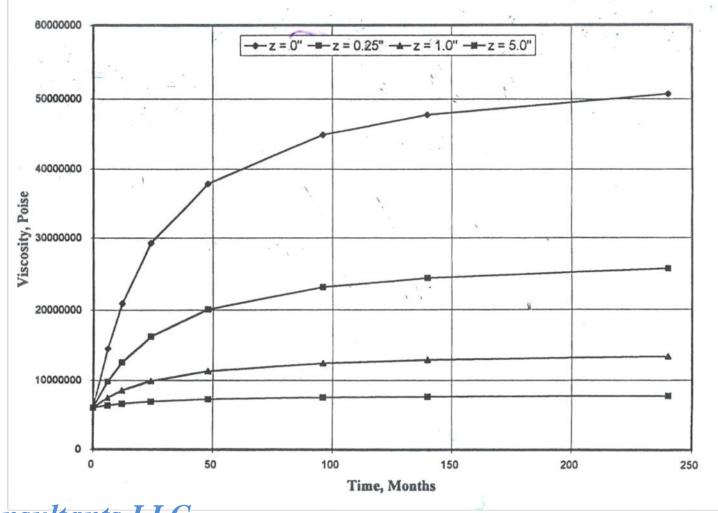

ZW Consultants LLC

AASHTO MEPDG Global Aging System (Witczak-Mirza Model)

• Includes 3 Major Models

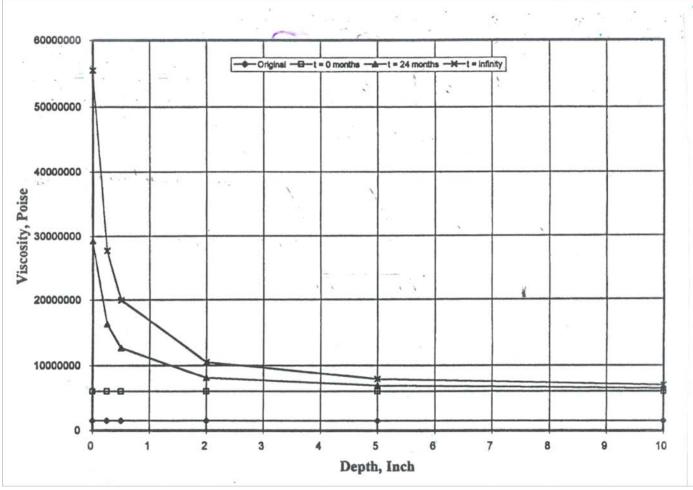
- Original to Mix / Laydown Model
- -Surface Aging Model
- -Viscosity Depth Model


Phases of AC Viscosity Aging

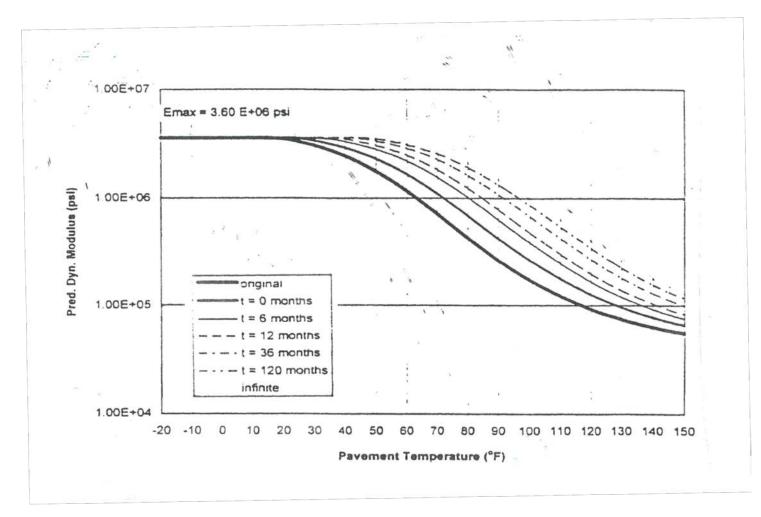

ZW Consultants LLC

40

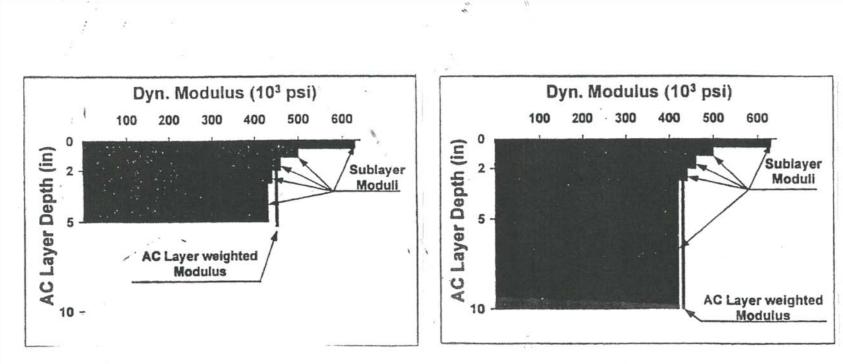
Viscosity Changes at Various Aging Stages



Long Term Field Aging as a Function of the Depth Within the Pavement


ZW Consultants LLC

Viscosity Depth Relationships at Various Aging Times



ZW Consultants LLC

Impact of Aging Upon E* Master Curves

Distribution of E* with Depth Within a Pavement Layer

(Pav. Temperature: 21.1 C [70 F]; MAAT = 4.4 C [40 F]; Asphalt AC-5; Mix Age: 24 months)

Possible Ways to Have Excessive AC Mix Aging in the Mix-Laydown Process

Possible and Very Practical Ways of Occurrence:

- **1.** Very High Temperatures during the Plant Mixing operations
- **2.** Too Long a Mixing Time during the Plant Mixing operations
- 3. Reheating of Mix Several Times after Cooling Down
- 4. Extended Period of Mix Storage in Silos
- **5.** Deficiencies from Target Mix Volumetrics (low AC%; and High Air Voids)

Major Consideration for the Pavement Community in the Greater Phoenix and Arizona Community

• Seriously Consider / Fund a Joint Research Program to:

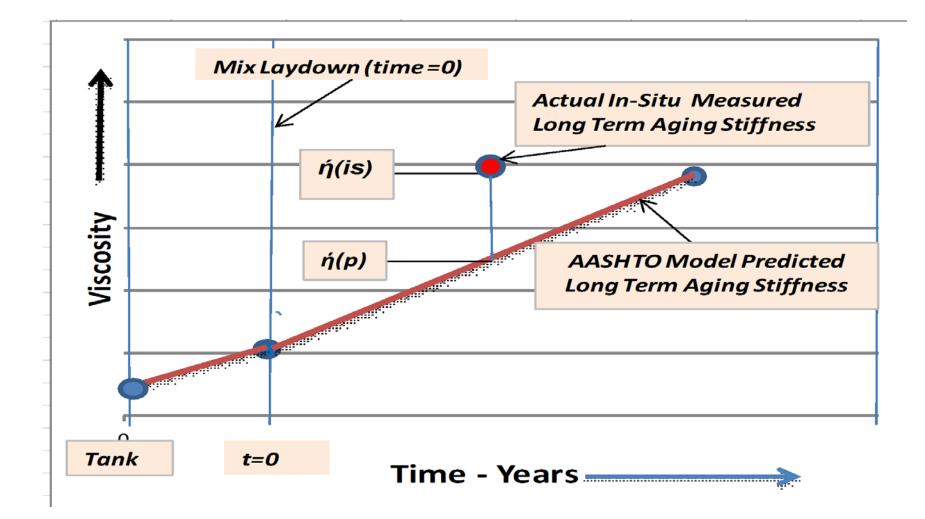
"Eliminate Durability Cracking in HMA Pavement Systems in the Southwest United States"

Multi Agency Involvement

Economic benefits of Project are Potentially Enormous

Some Background Fundamentals of Project Scope / Analysis

• AASHTO MEPDG Already Has Excellent :Typical Properties of Ai – VTSi Parameters of a Wide Range of AC Grades


Pen Graded AC Binders

Visc Graded Binders

PG Graded Binders

- Ai VTSi Parameters Exist for Following Consistency Conditions Virgin (Tank) Conditions RTFO (Short Term: Mix Laydown) Conditions
- This Information, along with AASHTO Ageing Models, would allow for Forensic Study capability on Actual Projects all over the SW Region

Basis of Research Analysis for Durability Study

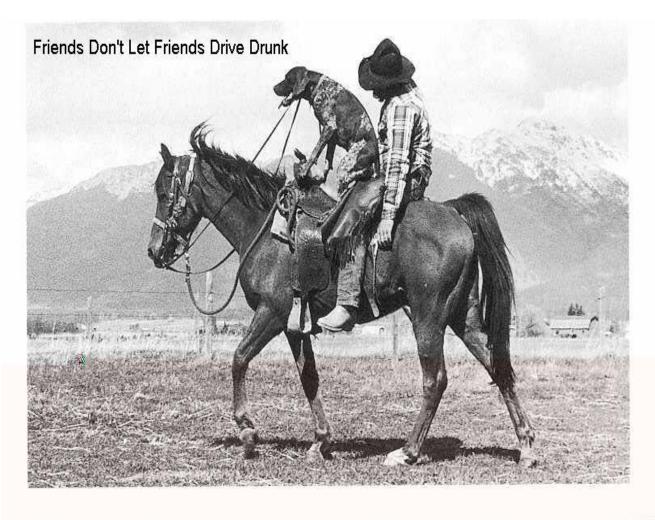
Research Study Basis Using Stiffness (Viscosity) Ratio

- For any Given Temperature, Depth, Ageing Time and Environmental Location, the Ratio of the AC Binder Viscosity (ή) or Stiffness (G*), for the Actual In-Situ Measurement to that of the Predicted Value is a Direct Indicator of the Probability of Having Durability Cracking
- If the Ratio ((ήis)/(ήp)) is
 - Ratio is << 1; No Durability Cracking Should Be Present
 - Ratio is = 1; Aging is under Normal (Typical) Conditions
 - Ratio is >> 1: Durability Cracking Becomes Very likely as Ratio Increases

Summary and Conclusions

- Current State of Knowledge is Excellent to Eliminate / Minimize Major Pavement related Distresses of:
 - Repeated Load HMA Fatigue Cracking
 - Rutting / Permanent deformation in HMA
 - Surface Rutting Caused by Subgrade Repetitive Shear Deformations
 - Thermal Fracture
 - Moisture Related Distress

Summary and Conclusions


- The Elimination of Durability Related Cracking in AC Layers is Currently the Most Salient (Major) Distress in the Southwest Region of the US that we DO NOT Presently Have a Fundamental Design Methodology or Procedure to Design Against
- AC Durability Cracking (in my Opinion) is the Most Critical Distress that Has Enormous Economic Implications in the Future Maintenance / Rehabilitation of:

Primary State / County Highways Urban (Residential) Styreet networks Private / Industrial Parking facilities

Summary and Conclusions

- A Comprehensive, Multi-Agency Project, Based Upon Principles Found in the New AASHTO Design Guide, that is Dedicated to the Elimination of Durability Cracking in AC Pavement Systems is <u>NECESSARY</u> and would Result in an Enormous Benefit / Cost Ratio for a Major Region of the US.
- The Study should Focus on:
 - Defining Limiting Long Term HMA / AC Binder Ageing Stiffness to Values that will not be Conducive to Developing Durability Cracking in the High Temperature Southwest US.
 - Identify Specification Limits (Badly Needed) on AC Binder Stiffness (Consistency) Values Immediately After the Construction Mix/Laydown Process

The Trip Down The Long Road

