

2012 Arizona Pavement/Materials Conference
Adam J.T. Hand, PhD, PE ♦ Granite Construction Incorporated
October 30, 2012 ♦ Phoenix, AZ

Outline

- Industry Challenges
- Industry Opportunities and Role of New Technology
- Our Role

Importance of Technology & Innovation

- Critical to Environmentally Responsible Supply
- Factor in Market Share
- Proven Track Record
 - Materials and Processes

 BUT, Pace of Implementation of New Technologies

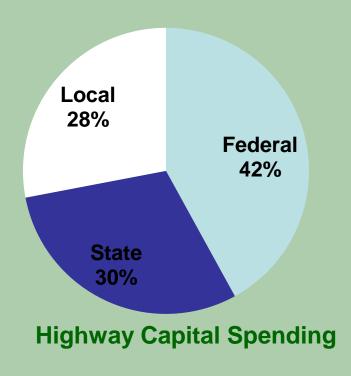
Industry Challenges

- Infrastructure Condition
- Economy / Funding
- Asphalt Binder Supply / Cost
- Competing Industry

Societal Changes

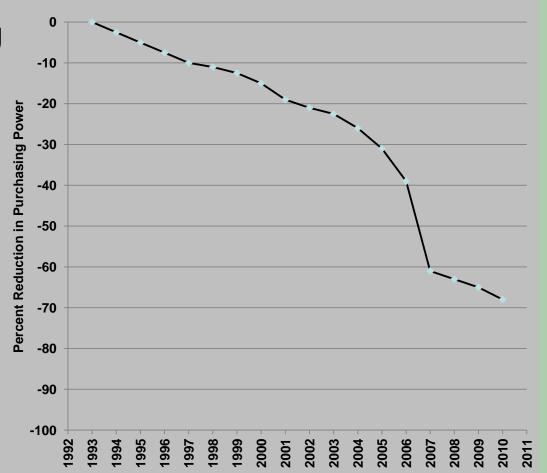
Infrastructure Condition*

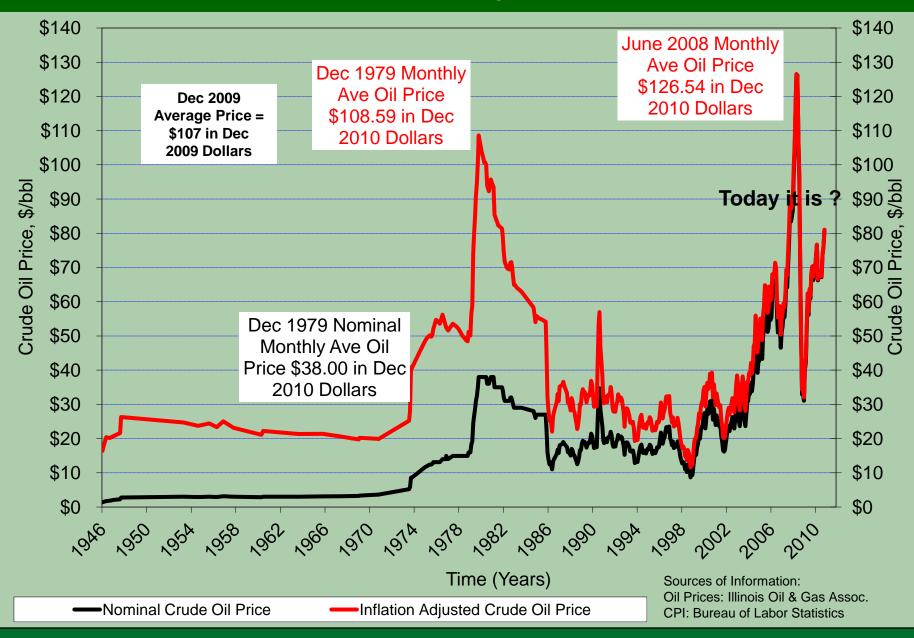
- Grade = D-
- ≈ 1/3 of US Roads Poor or Mediocre Condition
- ≈ 1/2 of Urban Highways Congested
- Lack of Investment through 2020 Will Cost:
 - ≈ 900,000 jobs
 - Suppress GDP by ≈ \$900B
- System Backbone of US Economy



^{*}ASCE 2009 and 2011 Report Card for Americas Infrastructure: Roads

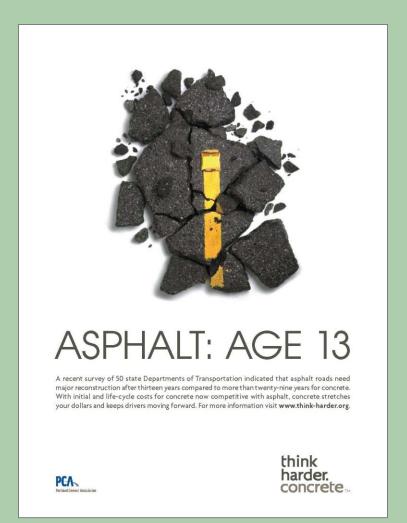
Economy / Funding


- Asphalt Pavement Market:
 - Historically: ≈ 65% Publicly Funded Highways
 - Federal, State, Local Funding
 - Federal \$ = Highway Trust Fund
 - Highway Trust Fund = Gas Taxes


- Federal Transportation Bill
 - Finally
 - We Still Need More

Economy / Funding

- Gas Taxes Not Raised Since 1993
 - Reduced Purchasing Power
 - Inflation
 - RaisingConstruction /Materials Costs
 - Reduced GasConsumption
 - Vehicle Miles
 Traveled
 - Improved Fuel Mileage


Asphalt Binder Supply / Cost

- **2011-2012**
 - Availability of Supply
 - Crude + Modifiers + Chemicals = Paving Grade Binders
 - 21 Cokers On-line by 2014
 - Refinery Capacity and Inventory
 - Capacity Down (50-80%), but Available
 - Inventories Low, Peak Season Supply?
 - Cost = f (Raw Product Cost, Capacity, Supply and Demand)
 - Peak Season Supply and Cost
 - July 2012: ≈ \$650/ton and \$800/ton
 - July 2013: \$650+/ton and \$800+/ton?

Competing Industries

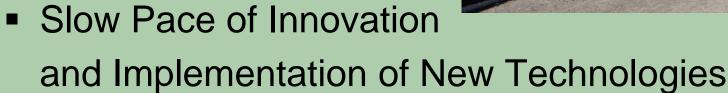
- Perception
- Economics
- Environmental Impacts
- Sustainability
- Fundamental ScienceNeeded with LCA
 - Cradle to Grave

Pace of Innovation and Implementation of New Technology

- USA Built on Innovative/Technical Leadership
- Pace of New Technology Implementation is Slow
 - Many Barriers We Must Breakthrough
 - Must Wisely Manage Risk
 - Need to Accelerate the Time to Evaluate New Technology
 - Evaluation Time ≠ Material Life

Societal Change

- Global Economy
- Sustainability
- Environmental Stewardship
- Social Responsibility
- Long-term Economic Prosperity
- Industry's Role: Public and Private


Outline

- Industry Challenges
- Industry Opportunities and Role of New Technology
- Our Role

Industry Opportunities

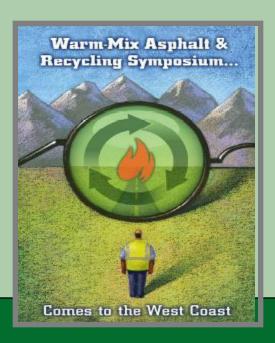
- Infrastructure Condition
- Economy / Funding
- Asphalt Binder Supply / Cost

Industry Opportunities

(Infrastructure Condition)

- Capacity and Ability Exists to Build and Preserve Asphalt Infrastructure
- Maintenance / Preservation
 - Seals
 - Thin Overlays
- Rehabilitation
 - Overlays
 - Mill & Fill
- Reconstruction
 - Structural Section
 - Replacement

Industry Opportunities


(Economy)

- Potential Economic Impact
 - US Unemployment ≈ 8.5%
 - Construction Unemployment ≈ 20%
 - Highway Construction Investment Impacts
 - Every \$1Billion Spent ≈ 35,000 Jobs
 - Every \$1 Invested ≈ \$1.80 GDP
- AASHTO Report to Congress
 - 9,500 Projects "Ready to Go" (within 120 days)
 - \$69 Billion Value
 - Highway Investment Most Effective Economic Stimulator

Industry Opportunities

(Economy)

- 2010 On...
 - Economics and Sustainability No Longer Independent
 - Sustainability is Key
 - Green Construction Technologies are Available
 - Materials
 - Processes
 - We Need to Grow the List

Industry Opportunities

(Asphalt Binder/Supply)

- Bigger than Asphalt Binder/Supply: Green Construction Technologies
 - Technologies
 - Recycling
 - > Materials
 - > Processes
 - Warm Mix Asphalt (WMA)
 - Preventive MaintenanceTreatments
 - Significant Sustainable
 Benefits through Green Technology

Industry Opportunities

- Recycled Materials
 - HMA: Most Recycled Material in the World ≈ 100M tons/yr RAP
 - Conventional and High RAP HMA
 - Tires
 - CRM (wet process) and Terminal Blend Binders
 - Shingles (RAS)
 - ManufactureByproductand Tear Offs
 - AggregateBase

States Use of Recycled Materials

RAP

- ≈ 75% of States Allow 10+% RAP in Surface Course
- ≈ 30 States Increased Allowable % RAP Since 2007

Shingles

- ≈ 20 States Allow 5% Shingles in HMA
- Tires CRM
 - Primarily South(east & west)
- Aggregate Base
 - 0 to 100%

Recycling Processes

- Recycle Processes
 - Cold In-place Recycling
 - Partial and Full Depth
 - Cold Foam In-place Recycling
 - Hot In-place Recycling
 - Aggregate Base Recycling

State's Use of In-Place Recycling

CIPR

- ≈ 20 States Specify
- Most States have Experimented

Red = 4+ Projects Green = No use Blue = Low/limited use White = No response

HIPR

- ≈ 10 States Specify
- Over 30 States have Experimented

Recycling Benefits

- Conservation
 - Materials (aggregate and asphalt binder)
 - Energy burner fuel & trucking (in-place processing)
- Preservation of Environment
 - Landfill
 - Emissions / Green House Gases (global warming)
- Economics
 - Important to Look at Life Cycle Costs through Recycle Products & Processes
 - Complete Reconstruction vs. Alternative Methods
 - Recycling Benefits Often Overlooked in Economic Analysis

Recycled Materials in HMA % Savings

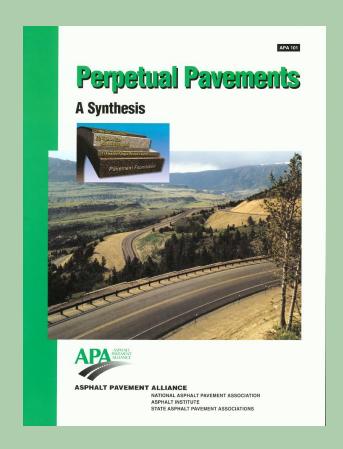
Material / Process	Recycled Material Content, %	Recycled Asphalt Binder Content, %	Price	Energy	CO _{2eq}	AC	Agg
Conventional HMA	0	0	-	-	•	•	-
RAP	15	4	5.7	6.1	4.7	11.5	15.2
	25	4	9.5	10.1	8.0	19.2	25.3
Post Industrial Shingles	5	18	6.6	7.6	4.5	17.3	4.3
Post Consumer Shingles	5	32	12.0	13.2	7.4	30.8	3.6
WMA	0	0	0.8	4.3	1.5	0.0	0.0

RAP is Green!

	Annual Consumption/	Estimated Annual Savings				
	Production	15% RAP	25% RAP	50% RAP		
Asphalt Binder, tons	23M	2.6M	4.3M	8.6M		
Aggregate, tons	407M	59M	98M	196M		
HMA Price, \$	240	1.0B	1.7B	3.4B		
	34B	(\$2.40/ton)	(\$4.00/ton)	(\$8.00/ton)		
Energy, 10 ¹² Btu	234	12	19	37		

Another Opportunity: Warm Mix Warm Mix Asphalt Hot M

NAPA NATIONAL ASPHALT PAVEMENT ASSOCIATIO

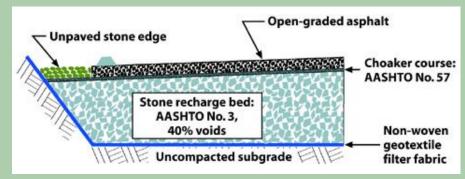

Benefits of WMA (NAPA QIS 125)

- Reduced Fuel Use
- Reduced Emissions
- Improved Working Conditions for Workers
- Paving Benefits
 - Compaction Aid
 - Cold-Weather Paving
 - Longer Haul Distances
 - Use of Higher %RAP
 - Beneficial in Non-Attainment Areas

Unique Design Considerations

- Specialty Materials
 - SMA
 - Porous Asphalt
 - Thin Overlays
- Design Procedures
 - Perpetual Pavements
 - Thin Overlays
- Performance Tests
 - NCHRP Ray Today

Stone Matrix Asphalt (SMA) (NAPA IS 128)


- Surface Course Only
- Superior Rut Resistance
- Superior Durability
- Gap Graded
- Premium Cost
- Primary Use in East and So. East
- Perpetual Pavement Surface Course

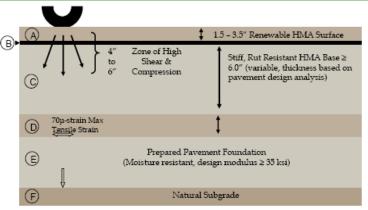
Porous Asphalts (NAPA IS)

- Dual Purpose Pavements
 - Parking Lots
 - Stormwater Management
 - Drains Recharge Bed
 - Infiltrates Soil
- Improve Water Quality
- Eliminate Detention Basins
- Cost-Effective
- UHI Tool

Thin Overlays

(NAPA IS 135)


- Improve Ride Quality
- Reduce Pavement Distresses
- Maintain Surface Geometrics
- Reduce Noise
- Reduce Life Cycle Costs
- Many Materials Can Be Used
 - HMA, WMA, RAP, RAS, PMB



Perpetual Pavements

(APA PerRoad Software)

- Long Life Multilayer Design with Routine Maintenance
- Benefits
 - Durability
 - Safety
 - Smoothness
 - Long Lasting
 - Cost Effective
 - No Expensive Time-Consuming Major Rehabilitation
- Limited Use

Tools for Unique Design Considerations

- Equipment is Available
- Materials and Materials Selection
 - Numerous NAPA Publications
 - APA Publications
- Processes (Design and Economics)
 - Perpetual Pavement Design Software
 - APA PerRoad Software
 - Life Cycle Cost Analysis Software
 - APA LCCA and LCCAExpress
 - Must Go To LCA

Outline

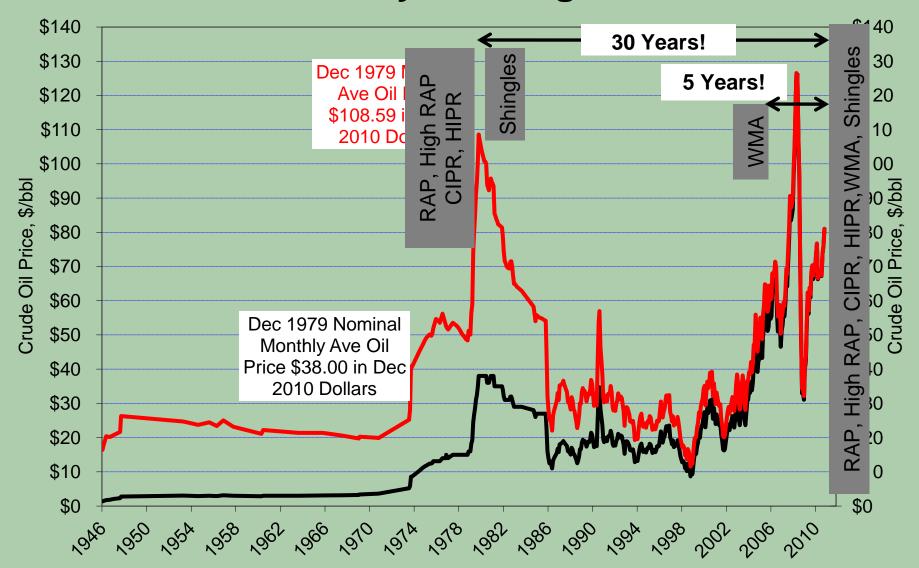
- Industry Challenges
- Industry Opportunities and Role of New Technology
- **⋄** Our Role

Putting Technologies Together

- RAP & RAS
- RAP & WMA
- RAP, RAS, & WMA
- CRM & RAP
- CRM, RAP, & RAS
- SMA, Thin Lifts
- Porous Pavements
- Perpetual Pavements
- Production/Equip.Capabilities in Place
- Design Tools Available

We Have The Technology!

- We Have Implementable Technologies
- Why Aren't They More Rapidly Implemented?
 - High RAP WMA
 - Shingles CRM
 - CIPR HIPR
 - SMA Porous Asphalt
 - Perpetual Pavements



- Are You Satisfied with the Pace?
- What Can You Do?
- What is The Next New Technology?
 (Could just be a combination of previously mentioned items...)

Use Latest Resources

- APA
 - Software
 - Documents
 - Carbon Footprint: How Does Asphalt Stack Up
 Whitepaper
 - Asphalt in Livable Communities
 - Pavement Smoothness and Fuel Economy
 - Pavement Type Selection
- NAPA
 - Documents
 - Conference/Workshops

Why So Long?

Time (Years)

Oil Prices: Illinois Oil & Gas Assoc.
CPI: Bureau of Labor Statistics

Pace of Acceptance

- Technology Implementation is TOO Slow
- Over 30 Years Experience with Many
- Accelerate Evaluation Process / Time
 - Design Procedures
 - Lab and Test Tracks, Field
- Optimize Benefit, Cost, and Risk

We Should ALL Be Committed to...

- Recognizing Infrastructure Condition / Forecast
- Maximizing Effectiveness of Declining Budget
- Using Technology / Innovation to Help
- Support Rapid Implementation of New Technology-materials and processes
- Adapting to Changing and Improving Society

