Implementation of M-E PDG in Maricopa County, Arizona

John Shi, PhD, PE Materials Engineer MCDOT

Pavement/Materials Conference

Mechanistic-Empirical Pavement Design Guide

MCDOT Update

15 projects:

- 8 new constructions 4 overlays 3 intersection improvements
- 4 types of AC mixes (24 samples):

- 3 types of binder:
- 2 types subgrade soils (2 samples):
- One type of MAG AB:
- Samples were tested for material ASU Lab characterization: MCDOT

19 mm Superpave 12.5 mm Superpave Rubberized Asphalt (Terminal Blend) Asphalt Rubber (AR)

Terminal Blend (PG **76-22**) Regular Binder (PG **70-10**) AR Binder (PG **64-16** w/ **Crumb Rubber**)

Silty/Sandy soil Clayey soil

From Rinker Plant in Phoenix, AZ

ASU Lab MCDOT Lab MCTEC Lab

A RECOVERED

Pavement/Materials Conference

MCDOT Update

- Test run M-E PDG program for 3 of the 8 new construction projects
- Establish pavement distress evaluation for all of the 15 projects
- Compare observed distresses with predicted from M-E PDG in the calibration process
- Consider using ADOT data within the County

Hot Mix Asphalt and Asphalt Binder

- Conduct Level 1, E* Test and other tests to obtain actual master curve and shift factor line
- Conduct conventional mix gradation, binder content, air voids, binder viscosity tests
- Use the predictive equation (correlation equation) to determine the master curve or parameters
- Compare the correlated properties with the actual tested.

Pavement/Materials Conference

AND COAT

Pavement/Materials Conference

Pavement/Materials Conference

Figure B-51. Shift Factors Based on Average E* Data of Three Replicates (Sample No. 17, Indian School Road, 19 mm, Replicate 2)

Binder Properties

Binder Type	PG70-10 Level 1	PG70-10 Level 3	AR Binder	Terminal Blend		
Ai	10.592	10.690	6.298	8.486		
VTS i	-3.527	-3.566	-1.962	-2.758		

Pavement/Materials Conference

Subgrade Material Database

- Create a user friendly GIS based database for MCDOT
- Soil units, defined in terms of Pedologic, AASHTO and USCS units, crossed by the major MCDOT streets and routes
- Soil unit material properties, including PI, P₂₀₀, R-Value if available, saturated hydraulic conductivity, soil classification, soil suction and expansion potential
- Groundwater table depth
- They will be used as input parameters required in the constitutive models recommended within the ME-PDG

M_R for Soil and Aggregate Base

- Select input Level 2 in the future
- No Level 1 cyclic tri-axial tests required
- Commonly used R-value, PI, gradation, Proctor, swell potential tests will be needed
- M_R from correlations depend on moisture fluctuations
- EICM uses weather data and SWCC to predict M_R
- Level 1 and Level 2 tests performed during input characterization
- Verify correlation

M_R for Soil and Aggregates Base (Cont'd...)

- Three water content values or suction levels selected
- Conduct cyclic tri-axial tests
- Determine the regression constant k₁, k₂, and k₃ corresponding to the moisture levels
- M_R can be obtained for given stress state and moisture condition
- Typical hot and cold condition stress levels for AB and subgrade provided
- Typical hot and cold condition M_n provided for the above mentioned moisture levels

Parameter	AB	Subgrade	Subgrade
	(A-1-a or GP-GM)	(A-4 or SM)	(A-4 or SC)
P ₂₀₀	6.8%	47.7%	47.4%
PI	NP	3	5
ρ _{d, max}	2.263 g/cm ³	1.935 g/cm ³	1.906 g/cm ³
W opt	7.0%	12.5%	12.2%
SG	2.679	2.739	2.710
M _{R, hot}	46,620 psi	22,272 psi	16,851 psi
M _{R, cold}	16,600 psi	22,457 psi	21,782 psi
M _{R, corr}	40,500 psi	25,600 psi	21,318 psi

Climatic Model Specific for MCDOT

 Default input climatic data files and typical climatic zones will be developed

Data Sources include:

- The National Climatic Data Center (NCDC)
- The Federal Highway Administration (FHWA) Long-Term Pavement Performance (LTPP) Database
- The Arizona Meteorological Network (AZMET) Database

Traffic Characterization

- Traffic data within the entire County for ME-PDG is not available
- Extremely costly to establish weigh-in-motion (WIM) sites and collect WIM data
- We used the national database values for our trials
- Most likely, the existing data such as AADT, Classification, direction counts, hourly counts will be used

Pavement/Materials Conference

Tested Flexible Pavement Locations

Pavement/Materials Conference

Tested Flexible Pavement Structures

Ellsworth Rd Indian School Rd Gavilan Peak Pkwy

Currently owned by City of Mesa Currently owned by City of Goodyear Currently owned by Maricopa County

Pavement/Materials Conference

Tested Flexible Pavements

	Ellsworth Road		Indian School Road	Gavilan Peak Parkway
• • • • • • • •	Principal Arterial East Valley New Construction 2-Lane, 2-Way 5.5" AC 10" AB SM subgrade Initial IRI 65 Opened in 2007 Current ADT 29,000 Current Trucks 5% Growth rate 7%	• • • • • • • • • • • •	Principal Arterial West Valley New Construction 2-Lane, 2-Way 1.5" AR over 5" AC 6" soil cement CL subgrade Initial IRI 58 Opened in 2008 Current ADT 24,000 Current Trucks 2% Growth rate 2%	 Principal Arterial Northern Area New Road 2-Lane, 2-Way 1.5" AR over 5" AC 6" AB SM w/ G subgrade Initial IRI 62 Opened in 2009 Current ADT 7,800 Current Trucks 8% Growth rate 4%

ME-PDG Runs—Cases*

Level 1 Runs	ESALs			
Ellsworth Rd	Case 1	As-Built Pavement	Old Design Traffic	14.4 Million
	Case 2	As-Built Pavement	Actual Existing Traffic	17.8 Million
Indian School	Case 1	As-Built Pavement	Old Design Traffic	7.9 Million
Rd	Case 2	As-Built Pavement	Actual Existing Traffic	4.5 Million
Gavilan Peak Pkwy	Case 1	As-Built Pavement	Old Design Traffic	7.0 Million
	Case 2	As-Built Pavement	Actual Existing Traffic	2.3 Million

Level 3 Runs	ESALs				
Ellsworth Rd	Case 1	As-Built Pavement	Old Design Traffic	14.4 Million	
	Case 2	As-Built Pavement	Actual Existing Traffic	17.8 Million	
Indian School	Case 1	As-Built Pavement	Old Design Traffic	7.9 Million	
Rd	Case 2	As-Built Pavement	Actual Existing Traffic	4.5 Million	
Gavilan Peak Pkwy	Case 1	As-Built Pavement	Old Design Traffic	7.0 Million	
	Case 2	As-Built Pavement	Actual Existing Traffic	2.3 Million	

* ME-PDG Version 1.100 was used to run these cases

Pavement/Materials Conference

ME-PDG Runs—Distress Target and Reliability

Performance Criteria	Units	Distress* Target	Reliability * Target
Terminal IRI	in/mile	172	90
Longitudinal Cracking (Surface Down)	ft/mile	1000	90
Alligator Cracking (Bottom Up)	%	100	90
Transverse Cracking (Thermal)	ft/mile	100	90
Rutting (AC Only)	in	0.25	90
Rutting (Total)	in	0.75	90

Distress and Reliability targets are the default values in the program.

Pavement/Materials Conference

ME-PDG Runs—Results

Ellsworth Road

Performance Criteria	Dis	istress Predicted			Reliability Predicted				Acceptable			
		L1 C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2
Terminal IRI in/mi 172, Rel. 90%	111.6	<u>108.4</u>	116.2	118.8	97.43	<u>98.24</u>	95.96	94.75	Р	Р	Р	Р
Longitudinal Cracking (Surface Down) ft/mi 1000, Rel. 90%	749	<u>441</u>	501	73 ²	72.11	<u>78.05</u>	76.81	72.42	F	F	F	F
Alligator Cracking (Bottom Up) 100, Rel. 90%	1.9	<u>1.4</u>	1.6	2.4	99•94	<u>99.99</u>	<u>99.99</u>	97.38	Р	Р	Р	Р
Transverse Cracking (Thermal) ft/mi 100, Rel. 90%	1	1	1	1	99.99	99.99	99.99	99.99	Р	Р	Р	Р
Rutting (AC Only) in 0.25, Rel. 90%	0.41	<u>0.35</u>	0.50	0.56	9.24	<u>17.01</u>	3.63	1.99	F	F	F	F
Rutting (Total) in 0.75, Rel. 90 %	0.66	<u>0.59</u>	0.78	0.84	74.34	<u>90.57</u>	41.64	30.23	F	Р	F	F
Pavamant/Matarials	4	Overall Best	Novemb	or 15-16-2	2011	Overall Best			4	Overall Best		

Pavement/Materials Conference

Level 1

Case 1

November 15-16, 201

ASU

COUNT

ME-PDG Runs—Results Indian School Road Road

Performance	Distress Predicted				Reliability Predicted				Acceptable			
Criteria	Lı Cı	Lı C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2
Terminal IRI in/mi 172, Rel. 90%	100.7	<u>96.2</u>	115.9	100.8	99.39	99.75	95 •94	99.41	Р	Р	Р	Р
Longitudinal Cracking (Surface Down) ft/mi 1000, Rel. 90%	122	<u>48.0</u>	1910	302	87.46	<u>93.23</u>	51.56	81.22	F	Р	F	F
Alligator Cracking (Bottom Up) % 100, Rel. 90%	2.4	<u>1.2</u>	7.7	1.9	98.85	<u>99.99</u>	88.99	<u>99.99</u>	Р	Р	F	Р
Transverse Cracking (Thermal) ft/mi 100, Rel. 90%	1	1	1	1	99.99	99.99	99.99	99.99	Р	Р	Р	Р
Rutting (AC Only) in 0.25, Rel. 90%	0.27	<u>0.20</u>	0.51	0.27	39.54	77.73	3.12	<u>39.42</u>	F	F	F	F
Rutting (Total) in 0.75, Rel. 90%	0.54	<u>0.45</u>	0.85	0.55	97.26	<u>99.96</u>	26.11	96.64	Р	Р	F	F
Pavement/Materials	4	2011	Overall Best			1	Overall Best)			

ME-PDG Runs—Results

Gavilan Peak Parkway

Performance	Distress Predicted				Reliability Predicted				Acceptable			
Criteria	Lı Cı	L1 C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2	Lı Cı	L1 C2	L3 C1	L3 C2
Terminal IRI in/mi 172, Rel. 90%	95.7	<u>91.5</u>	100.6	93.2	99.76	<u>99.90</u>	99.42	99.86	Р	Р	Р	Р
Longitudinal Cracking (Surface Down) ft/mi 1000, Rel. 90%	75.3	2.4	79.5	<u>1.6</u>	73.57	97.86	73.21	<u>98.94</u>	F	Р	F	Р
Alligator Cracking (Bottom Up) 100, Rel. 90%	0.6	0.3	0.7	<u>0.2</u>	99.99	99.99	99.99	99.99	Р	Р	Р	Р
Transverse Cracking (Thermal) ft/mi 100, Rel. 90%	1	1	1	1	93.61	93.61	93.61	93.61	Р	Р	Р	Р
Rutting (AC Only) in 0.25, Rel. 90%	0.24	<u>0.18</u>	0.36	0.22	52.69	<u>89.30</u>	15.31	68.53	F	F	F	F
Rutting (Total) in 0.75, Rel. 90 %	0.43	<u>0.33</u>	0.55	0.37	99•97	<u>99.99</u>	95.39	<u>99.99</u>	Р	Р	Р	Р
	4	Overall Best				Overall Best	>	-		Overall Best		22
Pavement/Materials Conference			Novemb	er 15-16, 2 ASU	2011						COUN	

Pavement/Materials Conference

Conference

Indian School Rd

Pavement/Materials Conference

ASU

Pavement/Materials Conference

Pavement/Materials Conference Pavement Age (month)

Gavilan Peak Parkway

Pavement/Materials Conference

Analysis of Results

Based on the results:

- Level 1 (L1) runs with Current Traffic (C2) generally indicated the predicted distress was lower &reliability was higher
- Level 3 runs generally produced failing results
- Measured IRI values were lower than the Predicted IRI from L1 runs, so far
- Measured IRI values were lower than 50% reliability prediction
- Measured Rutting values were also lower than 50% reliability prediction
- Some instances distress was acceptable but not the reliability

Conclusions

- Level 1 runs can be used to optimize the pavement design for site conditions
- Level 3 runs may produce conservative pavement sections
- The program can be calibrated to produce realistic results for Maricopa County
- The national data used for reliability predictions can be replaced if enough data is available within the County
- The desired calibration can be obtained over several years of data collection & comparison

Future Work

- Only 3 County sites were subject to analysis at this time, but there are 5 more County sites with data necessary to run the program
- All these 8 sites will be analyzed at least for seven years
- All these 8 sites will be subject to constant distress monitoring and IRI measurements
- ADOT has several sites with data within the County, and these sites also will be added to the pool so that the results are statistically sound
- The program will be calibrated to County specific conditions once enough measured and predicted comparisons are available
- County specific adjustments will be verified

Acknowledgements

Gant Yasanayake, PhD, PE Pavement Design Engineer—Project Management & Construction, MCDOT

Al Kattan, PE Division Manager—Project Management & Construction, MCDOT

John Hauskins, PE Director—MCDOT

Mike Mamlouk, PhD, PE Professor—Dept. of Civil, Environmental and Sustainable Engineering, ASU Claudia Zapata, PhD Asst. Professor—Dept. of Civil, Environmental and Sustainable Engineering, ASU Matthew Witczak, PhD, PE Professor—Dept. of Civil, Environmental and Sustainable Engineering, ASU

Pavement/Materials Conference

Thanks!

Pavement/Materials Conference

