

Accelerating solutions for highway safety, renewal, reliability, and capacity

Geotechnical Solutions for Transportation Infrastructure:

A Web-based Information and Guidance System

Vern Schaefer – Iowa State University

Arizona Pavements / Materials Conference Arizona State University, Tempe, AZ November 16, 2011

What are Geotechnical Solutions? (Construction Options)

Geoconstruction and Ground Improvement Methods and Systems

- Methods to alter poor soil/ground conditions to meet project requirements
- Variety of methods, often categorized by densification, reinforcement or stabilization

R02 Project Elements

1 Construction of new embankments and roadways over areas of unstable soils

2 Widening and expansion of existing embankments and roadways

3 Improvement and stabilization of the support beneath the pavement structure

Project Team

Project Principals

Vern Schaefer, ISU Ryan Berg, Consultant

David White, ISU Barry Christopher, Consultant

George Filz, VT Jim Collin, Consultant

Jie Han, KU Donald Bruce, Consultant

Jim Mitchell, VT Gary Fick, Consultant

Linbing Wang, VT Dennis Turner, Consultant

VT, ISU & KU Students/Researchers

Advisory Board Members

State DOT Representatives

James Brennan Kansas DOT

David Horhota Florida DOT

Mark Morvant Louisiana TRC

Hooshmand Nikoui Caltrans

David Shiells Virginia DOT

John Siekmeier Minnesota DOT

Design/Build Contractor Representatives

Allen Cadden Schnabel Engineering

Mike Cowell GeoConstructors, Inc.

Seth Pearlman DGI-Menards, Inc.

Steve Saye Kiewit Engineering

Al Sehn Hayward Baker Inc.

Phase 1 Overview Oct 2007 to Sept 2008

- Task 1 List of technologies & categorized bibliography
- Task 2 Technical Issues
- Task 3 QA/QC procedures
- Task 4 Constraints
- Task 5 Mitigation Strategies
- Task 6 Report & Phase 2 Plan

46 Technologies Addressed

- Aggregate Columns
- Beneficial Reuse of Waste Materials
- Bio-Treatment for Subgrade Stabilization
- Blast Densification
- Bulk-Infill Grouting
- Chemical Grouting/ Injection Systems
- Chemical Stabilization of Subgrades & Bases

- Column-Supported Embankments
- Combined Soil
 Stabilization with
 Vertical Columns
- Compaction Grouting
- Continuous Flight Auger Piles
- Deep Dynamic Compaction
- Deep Mixing Methods

46 Technologies Addressed (cont.)

- Drilled/Grouted & Hollow Bar
 Soil Nailing
- Electro-Osmosis
- Excavation & Replacement
- Fiber Reinforcement in Pavement Systems
- Geocell Confinement in Pavement Systems
- Geosynthetic Reinforced Construction Platforms
- Geosynthetic Reinforced Embankments

- Geosynthetic Reinforcement in Pavement Systems
- Geosynthetic Separation in Pavement Systems
- Geosynthetics in Pavement Drainage
- Geotextile Encased Columns
- High-Energy Impact Rollers
- Hydraulic Fill + Vacuum Consolidation + PVDs
- Injected Light-Weight Foam Fill

46 Technologies Addressed (cont.)

- Intelligent Compaction
- Jet Grouting
- Light Weight Fills
- Mechanical Stabilization of Subgrades & Bases
- MSE Walls
- Micro-Piles
- Onsite Use of Recycled Pavement Materials
- Partial Encapsulation
- PVDs & Fill Preloading

- Rapid Impact Compaction
- Reinforced Soil Slopes
- Sand Compaction Piles
- Screw-In Soil Nailing
- Shoot-In Soil Nailing
- Shored MSE Walls
- Traditional Compaction
- Vacuum Preloading w/ & w/o PVDs
- Vibrocompaction
- Vibro-Concrete Columns

Phase 2 Work Tasks

Nov 2007 to Dec 2011

Six tasks:

- 8. Test and evaluate the effectiveness of mitigation methods
- 9. Develop a catalog of materials & systems for rapid renewal
- 10. Refine/develop design procedures, QA/QC processes & guidance for geotechnical materials & systems
- 11. Develop methods for estimating costs of geotechnical & materials systems
- 12. Develop sample guide specifications for geotechnical & materials systems
- 13. Final report

End User Products

- Main product: Web based information and guidance system
- Development project reports
- Within the G&S system, for each of 46 technologies:
 - Technology Fact Sheets
 - Photographs
 - Case Histories
 - Design Procedures
 - Quality Control/Quality Assurance Procedures
 - Cost Estimating
 - Specifications
 - Bibliography

Audience

- Public agency personnel at local, state and federal levels
 - Primarily Geotechnical Engineers
 - Civil/Structural/Bridge Design & Construction Engineers, Pavement Design & Construction Engineers
 - Project Managers, Procurement, Research, Maintenance, District Engineers
- Consultants, General Contractors, A/E groups, Academics/Students

Product Use

- Web site
 - Learn about technologies, both technical and nontechnical users
 - Investigate candidate solutions, by category classification or using selection system
 - Locate design methods, quality methods
 - Develop cost estimates
 - Develop specifications
 - Technical summaries
- Locate additional information in references

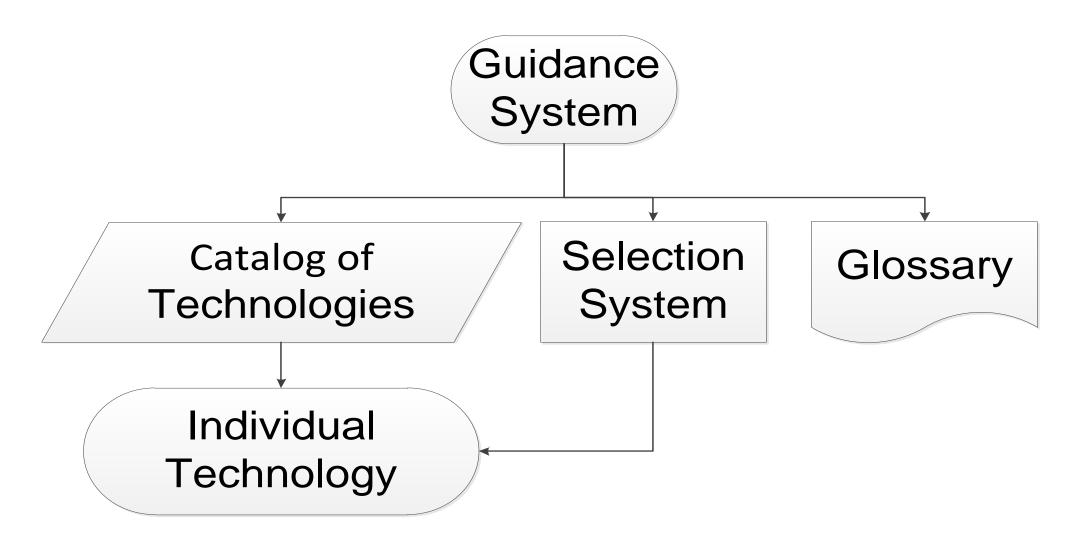
Goal of Information & Guidance System

To make geotechnical solutions more accessible to public agencies in the United States for rapid renewal and improvement of the transportation infrastructure.

"Project Vision"

Objectives of the System

- 1. Identify potential technologies for design and construction for the following transportation applications:
 - Construction over UNSTABLE soils
 - Construction over STABLE or STABILIZED soils
 - Geotechnical pavement components (base, subbase, and subgrade)
 - Working platforms


Objectives of the System

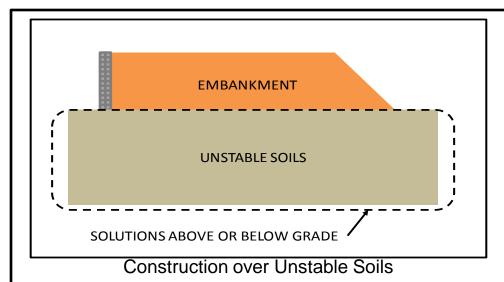
- 2. Provide guidance to develop a 'short-list' of applicable technologies
- 3. Provide guidance for detailed projectspecific screening of technologies with consideration of SHRP 2 Renewal Objectives
- 4. Provide an interactive, programmed system
- 5. Provide current, up to-date information

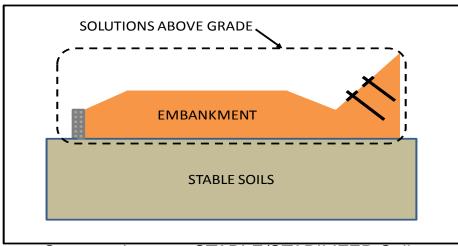
System Mandates

- The information and guidance system should be:
 - ❖ Simple
 - Functional
 - Completely populated
 - Selection system should guide user to a short-list of potential, unranked technologies.
 - Should be easily updatable

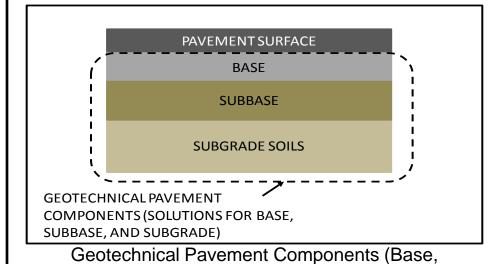
System Structure

Considerations for Selection System Development

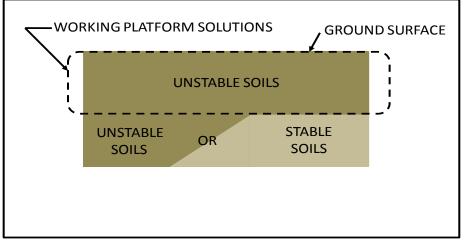

- Framework required addressing five areas:
 - 1. Overall system characteristics
 - 2. The user
 - 3. The knowledge
 - 4. The operating system
 - 5. Approach to the system

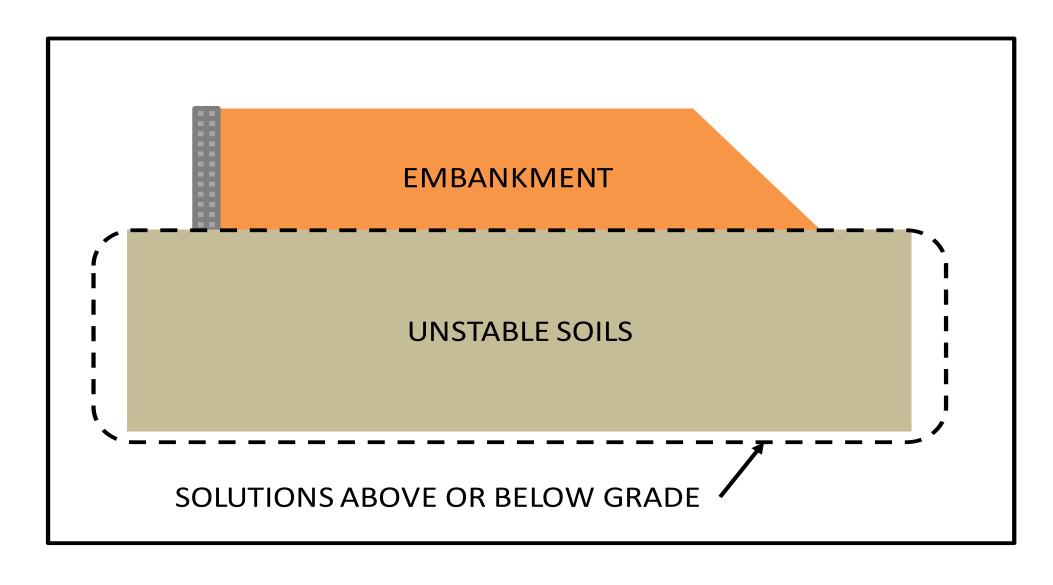

Getting Started...

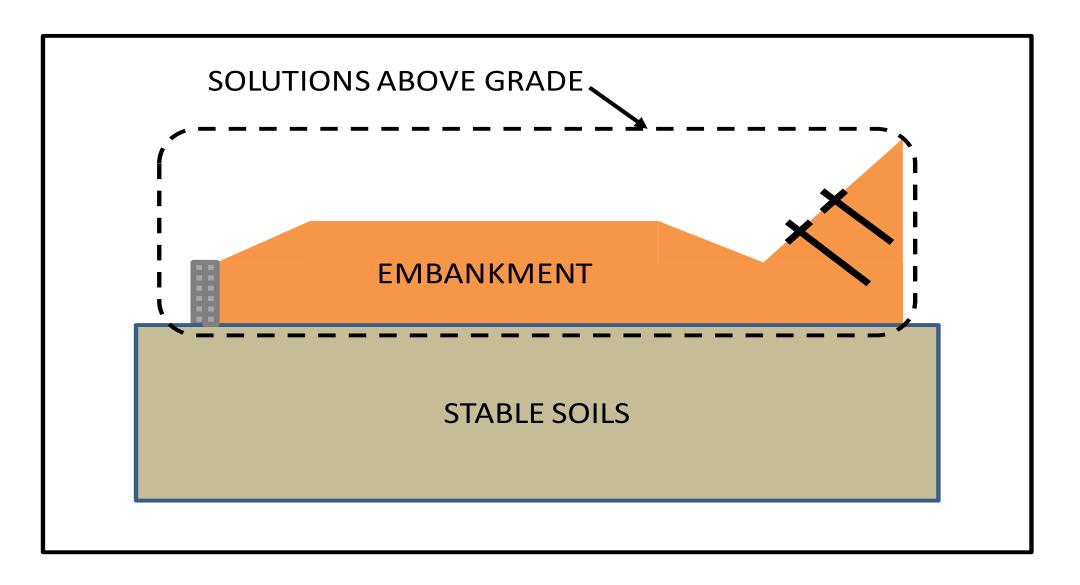
- What is the application?
- What is the soil condition that needs to be improved?
- To what depth do to the unstable soils extend?

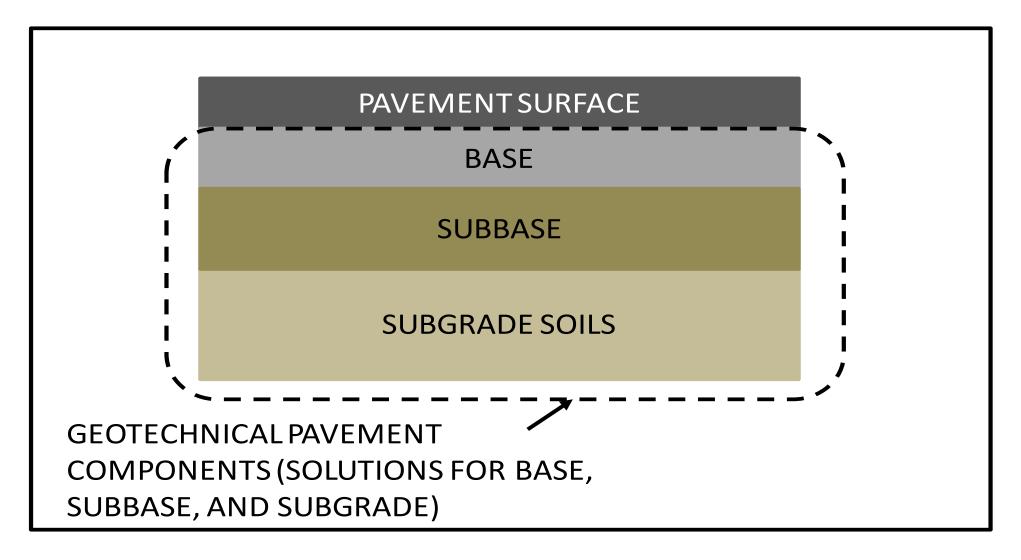

Value Added

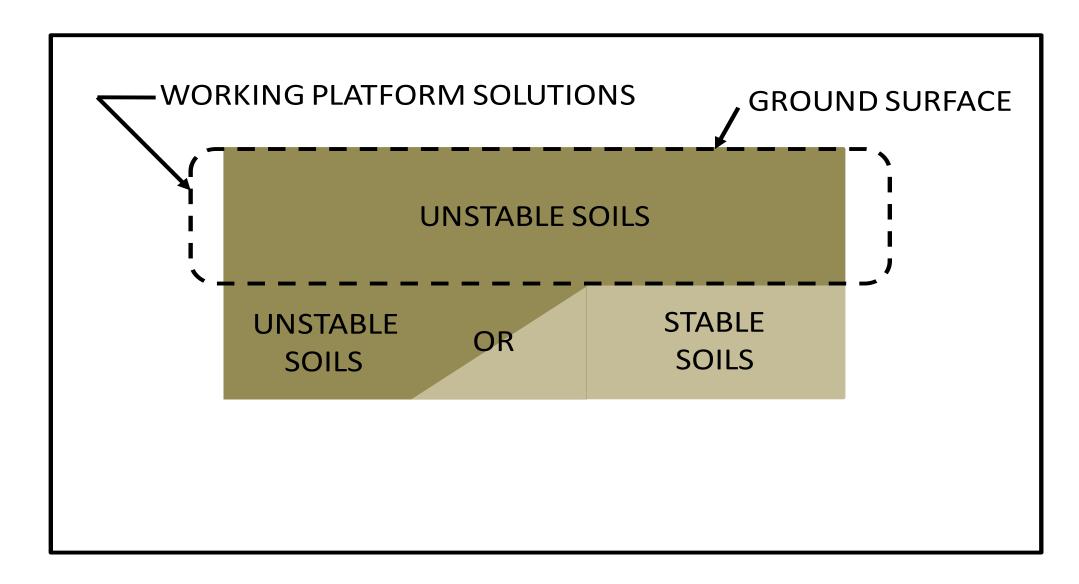
- Main product: Web based information and guidance system
- The primary value of the system is that it collects, synthesizes, integrates, and organizes a vast amount of critically important information about geotechnical solutions in a system that makes the information readily accessible to the transportation agency personnel who need it most.




Construction over STABLE/STABILIZED Soils


Subbase, and Subgrade)


Working Platforms


Construction over Unstable Soils

Construction over Stable/Stabilized Soils

Geotechnical Pavement Components (Base, Subbase, and Subgrade)

Working Platforms

Accelerating solutions for highway safety, renewal, reliability, and capacity

Information and Guidance System Overview and Examples

http://www.intrans.iastate.edu/geotechsolutions/index.cfm

Expected to be open to public in summer 2012

Geotechnical Solutions

TRANSPORTATION INFRASTRUCTURE

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

HOME

SHRP 2 R02 PROJECT BACKGROUND

GEOTECHNICAL DESIGN PROCESS

> CATALOG OF TECHNOLOGIES

TECHNOLOGY SELECTION

GLOSSARY

ABBREVIATIONS

FREQUENTLY ASKED QUESTIONS

SUBMIT A COMMENT

LINKS

ABOUT THIS WEBSITE

DRAFT - For Beta Review Only

This website and its contents were developed by the SHRP 2 R02 research team and is currently in beta testing; TRB makes no representation or warranty of any kind (see disclaimer). We look forward to receiving your comments and suggestions.

Geotechnical Solutions for Transportation Infrastructure is a SHRP 2 project developed to make geotechnical solutions more accessible to public agencies in the United States. This website is a toolkit of geotechnical information to address all phases of decision making from planning to design to construction to allow transportation projects to be built faster, to be less expensive, and/or to last longer. Anyone involved in planning, design, and construction of transportation infrastructure will benefit from the information and resources available here.

Geotechnical Design Process

Prior to technology selection, sitespecific conditions and constraints must be identified. The geotechnical design process presents an overview of the considerations involved in evaluating site conditions and implementing a geoconstruction technology.

Catalog of Technologies

The Catalog of Technologies provides a listing of all the technologies. For each technology, the following information is available:

- Technology Fact Sheet
- Photos
- Case Histories
- Design Guidance
- QC/QA Procedures
- Cost Estimating
- Specifications
- Bibliography

Technology Selection

Technology Selection is an interactive tool to identify candidate technologies for specific geoconstruction applications using project information and constraints. Final technology selection requires project-specific engineering. Technologies can also be accessed by classification or through a catalog of specific technologies.

Glossary

This website contains technical terms and industry-specific jargon. Â A glossary has been compiled to assist in understanding the terminology used throughout this website and in its documents.

- for -

TRANSPORTATION INFRASTRUCTURE

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

HOM

SHRP 2 R02 PROJECT BACKGROUND

GEOTECHNICAL DESIGN PROCESS

CATALOG OF

TECHNOLOGY SELECTION

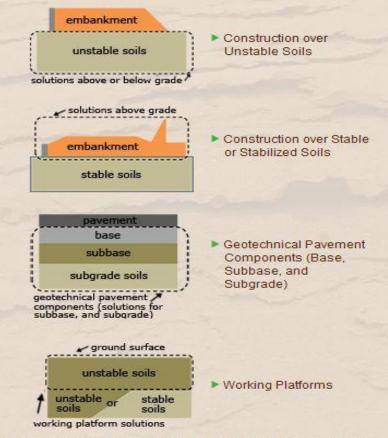
GLOSSAR'

ABBREVIATION:

FREQUENTLY ASKER

SUBMIT A COMMEN

LINK


ABOUT THIS WEBSIT

Interactive Selection System

Select an Application ?

Begin the interactive selection system by selecting one of the applications to the right. These inputs are the basic information required for screening potential technologies.

The technologies shown in the far right-hand column are all the potential solutions available in this system. After selecting one of the applications below, a short list of potential solutions for the selected application will appear in the right hand column. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

? are found throughout the interactive selection system to provide additional information regarding each selection.

Technologies

- ▶ Aggregate Columns
- Beneficial Reuse of Waste Materials
- Bio-Treatment for Subgrade Stabilization
- Blasting Densification
- Bulk-Infill Grouting
- Chemical Grouting/Injection
 Systems
- Chemical Stabilization of Subgrades and Bases
- ▶ Column-Supported Embankments
- Combined Soil Stabilization with Vertical Columns
- Tortical Columns
- ► Compaction Grouting
- Continuous Flight Auger Piles
- ▶ Deep Dynamic Compaction
- Deep Mixing Methods
- Drilled/Grouted and Hollow Bar Soil
 Nailing
- ▶ Electro-Osmosis
- Excavation and Replacement
- Fiber Reinforcement for Slopes
- Fiber Reinforcement in Pavement Systems
- Geocell Confinement in Pavement
 Systems
- Geosynthetic Reinforced
 Construction Platforms
- Geosynthetic Reinforced Embankments

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Geotechnical Pavement Components (Base, Subbase, and Subgrade)

Click on a response that best represents project conditions

Select Purpose of Technology Application

- Stabilization of Pavement Support Layer(s)
- ► Use of Alternative or Recycled Materials in Pavement Support Layer(s)
- ▶ Void Filling

Technologies

Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade Stabilization

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades and Bases

Electro-Osmosis

Excavation and Replacement

Fiber Reinforcement in Pavement Systems

Geosynthetic Reinforced Constructic Platforms

Geosynthetic Reinforcement in Pavement Systems

Geosynthetic Separation in Pavemer Systems

Geosynthetics in Pavement Drainage

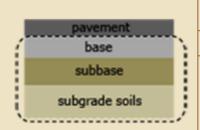
Hydraulic Fill + Vacuum Consolidation Geocomposite Drains

Injected Lightweight Foam Fill

Intelligent Compaction

Mechanical Stabilization of Subgrade and Bases

Onsite Use of Recycled Pavement Materials


Partial Encapsulation

Traditional Compaction

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Geotechnical Pavement Components (Base, Subbase, and Subgrade)

Purpose of Technology Application: Stabilize Pavement Support Layer(s)

Click on a response that best represents project conditions

Select Pavement Support Layers to Be Improved

- ► Base/Subbase Layer
- Subgrade Layer
- Deeper Subgrade Treatment (This selection links to the Construction Over Unstable Soils portion of the interactive selection system.)
- In-situ Treatment with Pavement Surface In Place

Technologies

Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade Stabilization

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades and Bases

Electro-Osmosis

Excavation and Replacement

Fiber Reinforcement in Pavement Systems

Geosynthetic Reinforced Constructic Platforms

Geosynthetic Reinforcement in Pavement Systems

Geosynthetic Separation in Pavemer Systems

Geosynthetics in Pavement Drainage

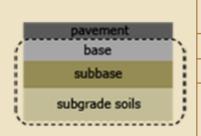
Hydraulic Fill + Vacuum Consolidation Geocomposite Drains

Injected Lightweight Foam Fill

Intelligent Compaction

Mechanical Stabilization of Subgrade and Bases

Onsite Use of Recycled Pavement Materials


Partial Encapsulation

Traditional Compaction

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Geotechnical Pavement Components (Base, Subbase, and Subgrade)

- Purpose of Technology Application: Stabilize Pavement Support Layer(s)
- > Layers to Be Improved: Subgrade Layer

Click on a response that best represents project conditions

Select Subgrade Soil Type

- ► High-plasticity (CH, MH) soils
- Low-plasticity (CL, ML) soils
- ► Plastic sands and gravels (GC, SC)
- Silty sands and gravels (GM, SM)
- Clean sands and gravels (SP,SW,GP,GW)
- Rock fill

Technologies

Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade Stabilization

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades and Bases

Electro-Osmosis

Excavation and Replacement

Fiber Reinforcement in Pavement Systems

Geosynthetic Reinforced Constructic

Geosynthetic Reinforcement in Pavement Systems

Geosynthetic Separation in Pavemer Systems

Geosynthetics in Pavement Drainage

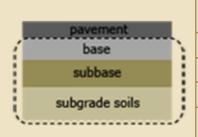
Hydraulic Fill + Vacuum Consolidation Geocomposite Drains

Injected Lightweight Foam Fill

Intelligent Compaction

Mechanical Stabilization of Subgrade and Bases

Onsite Use of Recycled Pavement Materials


Partial Encapsulation

Traditional Compaction

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Geotechnical Pavement Components (Base, Subbase, and Subgrade)

- Purpose of Technology Application: Stabilize Pavement Support Layer(s)
- > Layers to Be Improved: Subgrade Layer
- Subgrade Soil Type: Low-plasticity (CL, ML) soils

Click on a response that best represents project conditions

Select Property for Improvement

- Increase strength/stiffness and reduce deformation
- ► Mitigate moisture/drainage problems
- ► Increase freeze/thaw durability

Technologies

Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade Stabilization

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades and Bases

Electro-Osmosis

Excavation and Replacement

Fiber Reinforcement in Pavement Systems

Geosynthetic Reinforced Constructic

Geosynthetic Reinforcement in Pavement Systems

Geosynthetic Separation in Pavemer Systems

Geosynthetics in Pavement Drainage

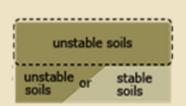
Hydraulic Fill + Vacuum Consolidation Geocomposite Drains

Injected Lightweight Foam Fill

Intelligent Compaction

Mechanical Stabilization of Subgrade and Bases

Onsite Use of Recycled Pavement Materials


Partial Encapsulation

Traditional Compaction

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Working Platforms

Click on a response that best represents project conditions

Select Type of Working Platform

- Permanent/deformation control
- Temporary/provide platform to support construction traffic over soft soil
- Construction platform in areas outside of traffic

Technologies

Chemical Stabilization of Subgrades and Bases

Excavation and Replacement

Geosynthetic Reinforced Constructic Platforms

Geosynthetic Reinforcement in Pavement Systems

Mechanical Stabilization of Subgrade and Bases

1	Гe	C	h	n	ol	lo	g	J
) P.	- f-	bri		*~	d V	lor	tio	

Prefabricated Vertical Drains and Fill Preloading

The links below open PDFs in a new window. The documents provide information about the selected technology.

Technology Fact Sheet Photos

Case Histories

Design Procedures Quality Control/Quality Assurance

Cost Estimating

Specifications

Create Zip File Clear

The SHRP2 R02 ratings for this technology are as follows:

	Potential Contribution to SHRP2 Renewal Objectives				
Degree of Technology Establishment	Rapid Renewal of Transp. Facilities	Minimal Disruption of Traffic	Production of Long- Lived Facilities		
5	2	1	4		

(Rating Scale: 1 = not established or low applicability, 5 = well established or high applicability)

Technologies

Aggregate Columns Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade

Stabilization

Blasting Densification

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades

and Bases Column-Supported Embankments

Combined Soil Stabilization with Vertical Columns

Continuous Flight Auger Piles Deep Dynamic Compaction

Compaction Grouting

Deep Mixing Methods

Drilled/Grouted and Hollow Bar Soil Nailing

Flectro-Osmosis

Excavation and Replacement

Fiber Reinforcement for Slopes

Fiber Reinforcement in Pavement

Systems Geosynthetic Reinforced

Construction Platforms

Geosynthetic Reinforced Embankments

Pavement Systems

Geosynthetic Reinforcement in

Products Available for each Technology (Information Transfer)

- For each technology:
 - Technology Fact Sheet
 - Photographs
 - Case Histories
 - Design Procedures
 - Quality Control/Quality Assurance
 - Cost Estimating
 - Specifications
 - Bibliography

Your selections so far Click on an item to return to a previous selection.

embankment

unstable soils

turri to a previous selection.

Selected Application

Construction Over Unstable Soils

Select a response that best represents project conditions

return to previous selection ? Select Unstable Soil Condition

- Unsaturated and Saturated, Fine Grained Soil
- ▶ Unsaturated, Loose Granular Soils
- ► Saturated, Loose Granular Soils
- ► Voids Sinkholes, Abandoned Mines, etc.
- Problem Soils and Sites Expansive, Collapsible, Dispersive, Organic, Existing Fill, Landfills

*For guidance on combining technologies, see White Paper on <u>Integrated Technologies for Embankments on Unstable Ground</u>.

- Aggregate Columns
- Blasting Densification
- Bulk-Infill Grouting
- Chemical Grouting/Injection Systems
- Column-Supported Embankments
- Combined Soil Stabilization with Vertical Columns
- Compaction Grouting
- Continuous Flight Auger Piles
- ▶ Deep Dynamic Compaction
- Deep Mixing Methods
- Electro-Osmosis
- Excavation and Replacement
- Geosynthetic Reinforced Embankments
- Geotextile Encased Columns
- ▶ High-Energy Impact Rollers
- ▶ Injected Lightweight Foam Fill
- Jet Grouting
- Lightweight Fill, EPS Geofoam, Low-Density Cementitious Fill

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

return to

previous selection

► Selected Application	Construction Over Unstable Soils
► Unstable Soil Condition	Unsaturated and Saturated, Fine Grained Soil

Select a response that best represents project conditions

? Depth Below Ground Surface To Which Unstable Soils Extend

- ▶ 0 5 ft
- ▶ 5 10 ft
- ► 10 30 ft
- ≥ 30 50 ft
- Greater than 50 ft

*For guidance on combining technologies, see White Paper on <u>Integrated Technologies for Embankments on Unstable Ground</u>.

Aggregate Columns

Blasting Densification

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

- ► Column-Supported Embankments
- Combined Soil Stabilization with Vertical Columns

Compaction Grouting

▶ Continuous Flight Auger Piles

Deep Dynamic Compaction

- Deep Mixing Methods
- Electro-Osmosis
- Excavation and Replacement
- Geosynthetic Reinforced Embankments
- ▶ Geotextile Encased Columns

High-Energy Impact Rollers

- ▶ Injected Lightweight Foam Fill
- ▶ Jet Grouting
- Lightweight Fill, EPS Geofoam, Low-Density Cementitious Fill

Micro Diles

Project-Specific Technology Selection

This will display selections made and the next set of questions.

Selections Made

The following selections have been made so far. Click on an item to return to a previous selection.

Selected Application: Construction over unstable soils

Depth Below Ground Surface: 10 - 30 ft

Unstable Soil Condition: Unsaturated/Saturated, Fine Grained Soils

Select Project-Specific Characteristics

Select unstable soil condition that best describes site:

Are sufficiently thick peat layers present that will affect construction and settlement?

Are water bearing sands present in the soil to be improved?

Would any subsurface obstruction cause drilling difficulty, such as cobbles or boulders?

Purpose of Improvement:

Select Project Type:

Site Characteristics:

Size of Area to be Improved:

Project Constraints:

------ Make your selection ------

------ Make your selection -----

------ Make your selection ------

----- Make your selection -----

----- Make your selection ------

----- Make your selection -----

----- Make your selection ------

Create PDF of your selections and results

Technologies

Aggregate Columns

Blasting Densification

Chemical Grouting/Injection Systems

Combined Soil Stabilization with Vertical

Column-Supported Embankments

Columns

Compaction Grouting

Continuous Flight Auger Piles

Deep Dynamic Compaction

Deep Mixing Methods Electro-Osmosis

Excavation and Replacement

Geosynthetic Reinforced Embankments

Geotextile Encased Columns High-Energy Impact Rollers

Injected Lightweight Foam Fill

Jet Grouting

Lightweight Fills

Micro-Piles

Prefabricated Vertical Drains and Fill Preloading

Rapid Impact Compaction

Sand Compaction Piles

Vacuum Preloading with and without Prefabricated Vertical Drains

Vibrocompaction

Vibro-Concrete Columns

Project-Specific Technology Selection

This will display selections made and the next set of questions.

Selections Made

The following selections have been made so far. Click on an item to return to a previous selection.

Selected Application: Construction over unstable soils Unstable Soil Condition: Unsaturated/Saturated, Fine Grained Soils

Depth Below Ground Surface: 30 - 50 ft

Select Project-Specific Characteristics

Select unstable soil condition that best describes site:

Are sufficiently thick peat layers present that will affect construction and settlement?

Are water bearing sands present in the soil to be improved?

Would any subsurface obstruction cause drilling difficulty, such as cobbles or boulders?

Purpose of Improvement:

Select Project Type:

Site Characteristics:

Size of Area to be Improved:

Project Constraints:

Unstable soil extends from surface to treatment der.

Nο

No

----- Make your selection -----

Increase Strength Embankment Widening

Constrained, developed sites

From 10,000 ft2 (930 m2) to 50,000 ft2 (4,600 m2) ----- Make your selection ------

Create PDF of your selections and results

Technologies

Aggregate Columns

Blasting Densification

Chemical Grouting/Injection Systems Column-Supported Embankments

Combined Soil Stabilization with Vertical Columns

Compaction Grouting

Continuous Flight Auger Piles Deep Dynamic Compaction

Deep Mixing Methods

Electro-Osmosis

Excavation and Replacement Geosynthetic Reinforced Embankments

Geotextile Encased Columns High-Energy Impact Rollers

Injected Lightweight Foam Fill

Jet Grouting

Micro-Piles

Lightweight Fills

Prefabricated Vertical Drains and Fill

v

Preloading

Rapid Impact Compaction

Sand Compaction Piles

Vacuum Preloading with and without Prefabricated Vertical Drains

Vibrocompaction

Vibro-Concrete Columns

Technology

Aggregate Columns

The links below open PDFs in a new window. The documents provide information about the selected technology.

Technology Fact Sheet

Photos

Case Histories

Design Procedures

Quality Control/Quality Assurance

Cost Estimating

Specifications

The SHRP2 R02 ratings for this technology are as follows:

	Potential Contribution to SHRP2 Renewal Objectives						
Degree of Technology Establishment	Rapid Renewal of Minimal Disrupt Transp. Facilities of Traffic		Production of Long- Lived Facilities				
4	4	1	4				

(Rating Scale: 1 = not established or low applicability, 5 = well established or high applicability)

Technologies

Aggregate Columns

Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade Stabilization

Blasting Densification

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades and Bases

Column-Supported Embankments

Combined Soil Stabilization with Vertical Columns

Continuous Flight Auger Piles

Deep Dynamic Compaction

Deep Mixing Methods

Drilled/Grouted and Hollow Bar Soil Nailing

Electro-Osmosis

Excavation and Replacement

Fiber Reinforcement for Slopes

Fiber Reinforcement in Pavement Systems

1	Гe	C	h	n	ol	lo	g	J
) P.	- f-	bri		*~	d V	lor	tio	

Prefabricated Vertical Drains and Fill Preloading

The links below open PDFs in a new window. The documents provide information about the selected technology.

Technology Fact Sheet Photos

Case Histories

Design Procedures Quality Control/Quality Assurance

Cost Estimating

Specifications

Create Zip File Clear

The SHRP2 R02 ratings for this technology are as follows:

	Potential Contribution to SHRP2 Renewal Objectives				
Degree of Technology Establishment	Rapid Renewal of Transp. Facilities	Minimal Disruption of Traffic	Production of Long- Lived Facilities		
5	2	1	4		

(Rating Scale: 1 = not established or low applicability, 5 = well established or high applicability)

Technologies

Aggregate Columns Beneficial Reuse of Waste Materials

Bio-Treatment for Subgrade

Stabilization

Blasting Densification

Bulk-Infill Grouting

Chemical Grouting/Injection Systems

Chemical Stabilization of Subgrades

and Bases Column-Supported Embankments

Combined Soil Stabilization with Vertical Columns

Continuous Flight Auger Piles Deep Dynamic Compaction

Compaction Grouting

Deep Mixing Methods

Drilled/Grouted and Hollow Bar Soil Nailing

Flectro-Osmosis

Excavation and Replacement

Fiber Reinforcement for Slopes

Fiber Reinforcement in Pavement

Systems Geosynthetic Reinforced

Construction Platforms

Geosynthetic Reinforced Embankments Geosynthetic Reinforcement in

Pavement Systems

Geotechnical Solutions

TRANSPORTATION INFRASTRUCTURE

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

HOME

SHRP 2 R02 PROJECT BACKGROUND

GEOTECHNICAL DESIGN PROCESS

> CATALOG OF TECHNOLOGIES

TECHNOLOGY SELECTION

GLOSSARY

FREQUENTLY ASKED QUESTIONS

SUBMIT A COMMENT

LINKS

ABOUT THIS WEBSITE

Submit a Comment

Use the form below to submit a comment regarding this website to the project team. For inquiries regarding submission of technology specific information, please see the Frequently Asked Questions below:

FAQs

How do I submit a case history for a technology?

How do I submit a photograph or video for a technology?

How do I submit a specification for a technology?

How do I submit cost information for a technology?

How do I submit a reference for a technology?

→ To submit documents, go to the Submit Technology-Specific Information page.

*Name:

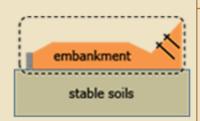
*E-mail address:

*Reconfirm E-Mail:

*Technology:

Aggregate Columns

*Comment regarding:


Other

*Submit Comment

Each screen will prompt for an input. These inputs are the basic information required for screening potential technologies. The technologies shown in the right-hand column are potential solutions for the selected application. As additional inputs are entered, potential technologies are highlighted and eliminated technologies are faded.

Your selections so far

Click on an item to return to a previous selection.

Selected Application: Construction Over Stable or Stabilized Soils

Click on a response that best represents project conditions

Select Purpose of Technology Application

- ► Enhance Compaction Process
- Slope Stabilization and Earth Retention
- ► Use of Alternative or Recycled Materials

Technologies

Beneficial Reuse of Waste Materials

Drilled/Grouted and Hollow Bar Soil Nailing

Fiber Reinforcement for Slopes

High-Energy Impact Rollers

Hydraulic Fill + Vacuum Consolidation Geocomposite Drains

Intelligent Compaction

Lightweight Fill, EPS Geofoam, Low-Density Cementitious Fill

MSEW

Onsite Use of Recycled Pavement Materials

Rapid Impact Compaction

Reinforced Soil Slopes

Screw-in Soil Nailing

Shoot-in Soil Nailing

Shored Mechanically Stabilized Earth Wall System

Traditional Compaction