An Overview of Accelerated Pavement Testing

David Jones, PhD
University of California Pavement Research Center

Arizona Pavement Materials Conference Tempe, AZ, November 2011

Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- > Conclusions

Introduction

> History

- + WASHO Road Test (1951-53)
- + AASHO Road Test (1958-60)
- + Introduction of linear tracks
- + New test tracks

> Programs

- + Internationally accepted technology
- + 12 US APT programs
- + TRB research committee
- + International conference

Personal experience

- + South Africa (1990-2005)
- + California (1995 onwards)

4th International Conference on Accelerated Pavement Testing

Davis, California, USA September 19-21, 2012

Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- > Conclusions

What is APT?

- > Controlled loading of a pavement
- > Acceleration by:
 - + Frequency of passes
 - + Increased axle loads
 - + Environmental control
 - Temperature
 - · Moisture content
- > APT is not fast "LTPP"
 - + Snapshot in time
 - + Limited climate/aging effect
 - + No traffic mix
 - + Limited dynamic effect

What is APT

Reliability

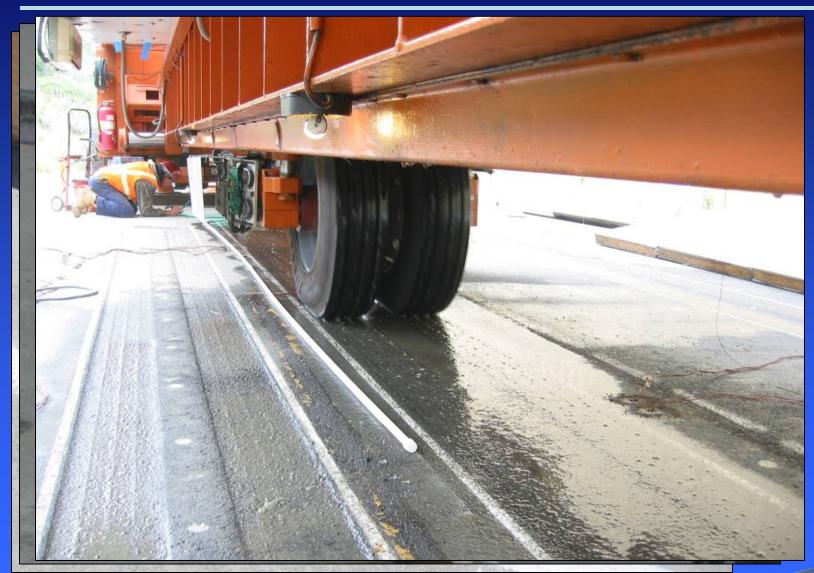
Long-Term Monitoring (10-30 years)

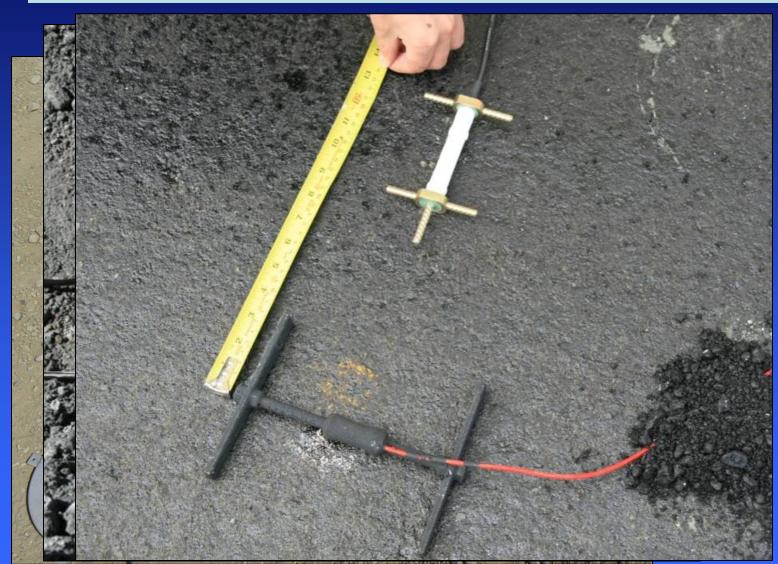
Accelerated Pavement Testing (months)

Laboratory Testing (weeks)

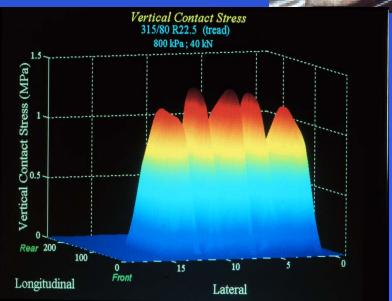
Computer Analysis (days)

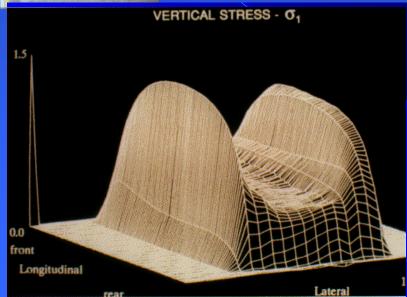
Time & Cost


What is APT?



What is APT?





Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- Conclusions

Why do APT?

- Understand pavement behavior / response under different loading and environmental conditions
- > Identify and highlight deficiencies in current practices
- Evaluate new materials, designs, specifications or construction standards before full scale implementation
- Compare different designs, materials, procedures, products, etc
- > Validate/calibrate new designs and performance models
- > Link laboratory test results and field observations
- Assess impacts of new vehicles, tires, tire inflation presures, load limits, etc

APT is not fast LTPP!

Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- > Conclusions

- > Two main types of APT
 - +Fixed
 - · Linear (HVS, ALF, ATLAS)
 - · Circular (LCPC, Captif)
 - + Test track
 - · AASHO Road Test
 - Westrack
 - · NCAT
 - MnRoad

US APT Programs

Heavy Vehicle Simulator

- + California
- + Florida
- + USACE (CRRL and WES)
- + FAA

Accelerated Load Facility

- + FHWA
- + Louisiana

> Other linear

- + FAA
- + Illinois
- + Kansas
- + Indiana
- + Ohio

> Test Tracks

- + MnRoad
- + NCAT
- + Westrack

Fixed Devices

- > Controlled temperature and moisture
- > Slow speed trafficking
- > Ability to vary load and to overload
- > Short sections
- > Controlled wander
- >Little or no suspension interaction
- Difficult to measure roughness
- > Can be moved anywhere

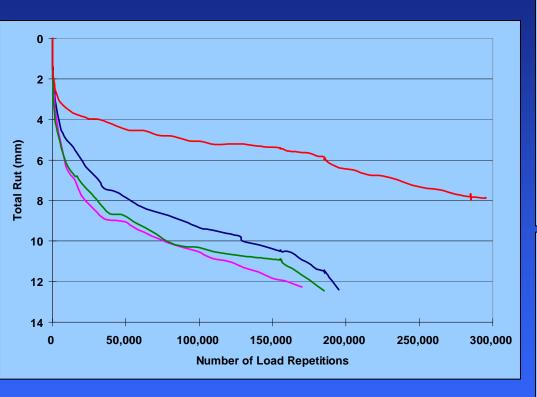
Test Tracks

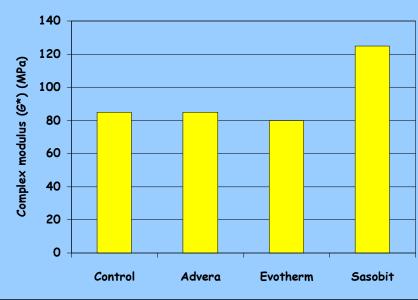
- >Uncontrolled temperature and moisture
- > Highway speed trafficking
- >Limited ability to overload
- >Longer sections
- > Uncontrolled wander
- Realistic suspension interaction
- > Meaningful roughness measurement
- > Fixed location

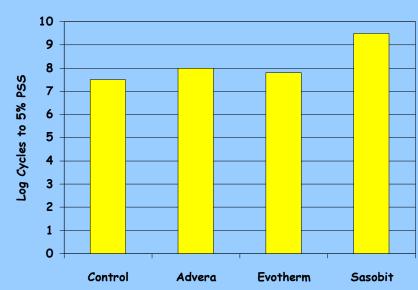
Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- Conclusions

- Purchased two refurbished HVS Mk IIIs from South Africa in 1995
- > Replaced one machine with HVS Mk VI in 2011
- > Operated in various locations
- > Project summary
 - + 15 projects (>120 tests)
 - + >80 million load repetitions
 - + ~ 4 billion ESALs
- > Cost-benefit between 4 and 10
 - + Savings
 - + Accelerated implementation
 - + Reduced risk







- > Concrete projects
 - + Dowel bar retrofit
 - + Precast slabs
 - + PCC design procedures
- > Other projects
 - + Bay bridge deck joint

Bay Bridge Deck Joint

Summary

- > Introduction
- > What is APT?
- > Why do APT?
- > APT devices & programs
- Overview of the Caltrans/ UCPRC APT program
- > Conclusions

Conclusions

- Proven technology for over 60 years
- > 12 programs in the USA
- > Documented benefits:
 - + Understanding pavement behavior
 - + Faster implementation of new technology with lower risk
 - + Developing and calibrating performance models

Thank you!

David Jones

djjones@ucdavis.edu

www.ucprc.ucdavis.edu

