

GEOSYNTHETIC REINFORCED SOIL INTEGRATED BRIDGE SYSTEM

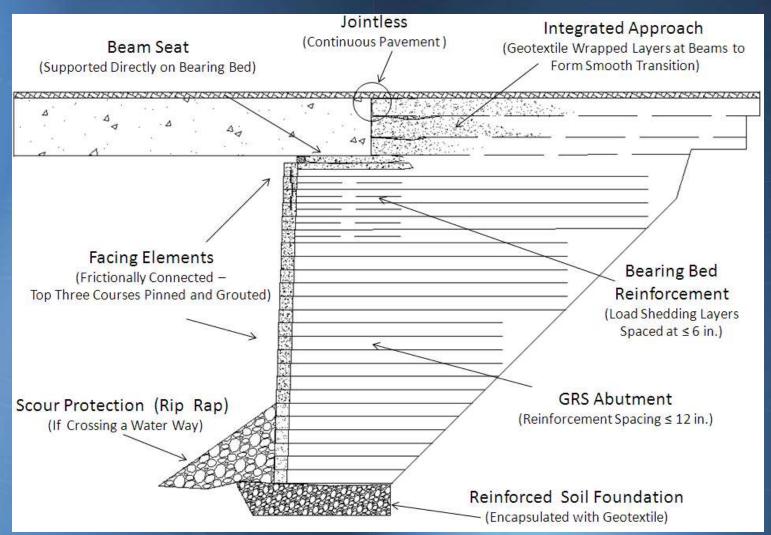
Michael Adams, Daniel Alzamora, Jennifer Nicks

 Taking effective, proven and market– ready technologies and getting them into widespread use

www.fhwa.dot.gov/everydaycounts

Definitions

GRS - Geosynthetic Reinforced Soil


 An engineered fill of closely spaced (< 12") alternating layers of compacted granular fill material and geosynthetic reinforcement

IBS - Integrated Bridge System

 A fast, cost-effective method of bridge support that blends the roadway into the superstructure using GRS technology

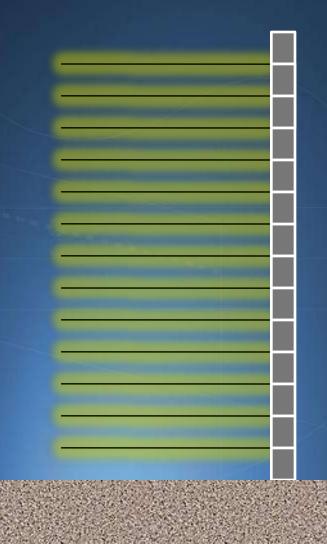
Cross-Section of GRS-IBS

GRS Fundamentals

Summary of Benefits

- Reduced construction cost (25 60%)
- Reduced construction time
- Construction less dependent on weather conditions
- Flexible design easily field modified for unforeseen site conditions (e.g. obstructions, utilities, different site conditions)
- Easier to maintain (fewer bridge parts)
- QA/QC Advantages

GRS Fundamentals


Site Selection

- Single span (currently 140 ft)
- 30 ft abutment height
- Grade separation
- Water crossings with low scour potential
- Steel or concrete superstructures
- New or replacement structures

Composite Behavior

GRS Composite Structure Friction Connections Close Spacing

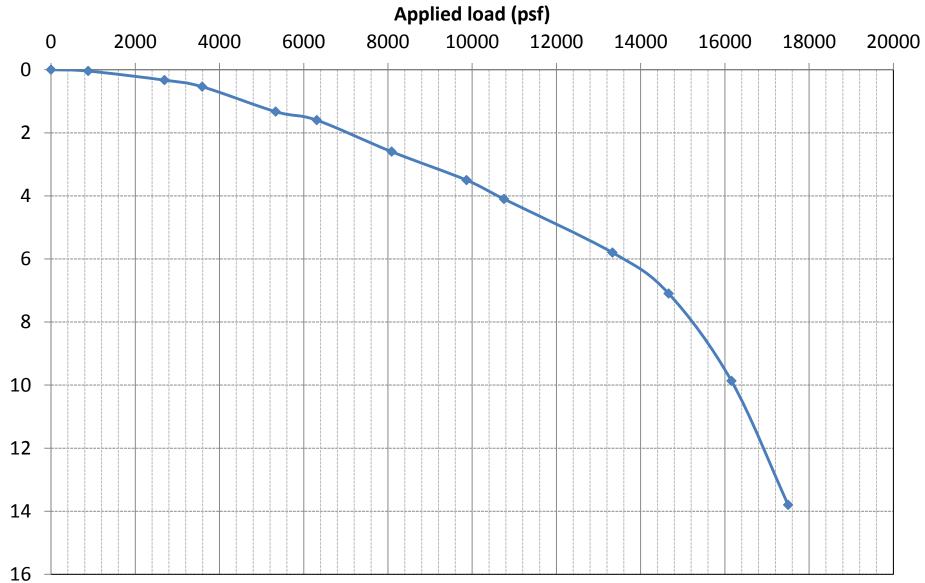
GRS Fundamentals

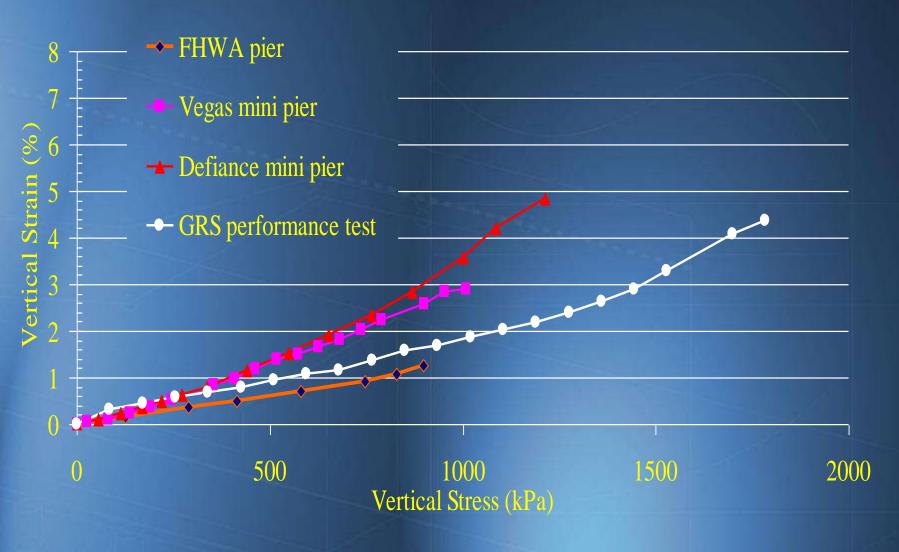
Performance Tests

Before

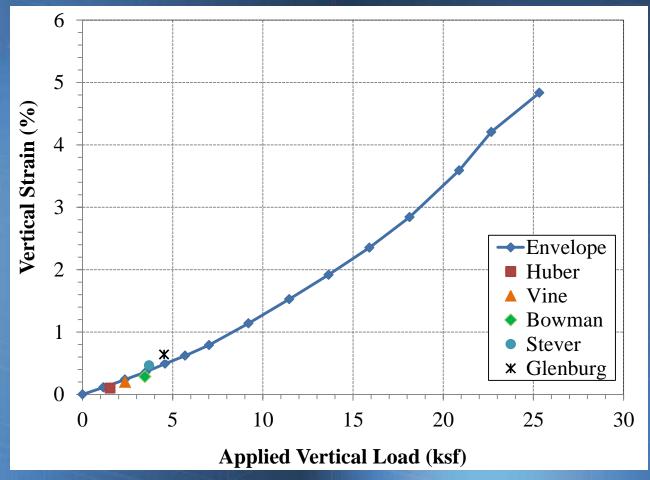
Performance Test 2400 lb/ft @ 8" Spacing

Before




storation

ingene


Performance Test Results

Design of GRS-IBS

Vertical Deformation Continued

GRS IBS Reports

Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide

PUBLICATION NO. FHWA-HRT-11-028

JANUARY 2011

US Department of Transportation Federal Highway Administration

Raswards, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 Geosynthetic Reinforced Soil Integrated Bridge System Synthesis Report

PUBLICATION NO. FHWA-HRT-11-027

JANUARY 2011

US Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike MicLean, VA 22101-2286

U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

B. QUANTITIES & DESIGN DIMENSIONS C. PLAN AND ELEVATION FACING BLOCK SCHEDULE D. GRS-IBS ABUTMENT DETAILS

STATE

INDEX TO SHEETS

54EE1

NUMBE

.

PROJECT

FHWA GRS-IBS

GENERAL NOTES

PURPOSE: These example plan Sheets A through D were prepared to illustrate the pylical contents of a soci of drawings necessary for a GRS-185 project. Presented in these plans are the assumptions for the bridge and GRS-185 systems with typical well heights (M) ranging from 10 to 24 feet. Two conditions were prepared for the quantity estimate Sheet B: "poor soil conditions" and "Bavorable soil conditions". INTENCED USE: These plans are not associated with a specific project. All dimensions and properties should be confirmed and/or revised by the Engineer of Record prior to use. Project specifications should be prepared to supplement this plan set.

DESIGN

DESIGN LOADS AND SOIL PROPERTIES

Combined load: Superstructure (qLL + qB) 2 TSF maximum (service load, allowable stress design). Roadway live load surcharge: 250 psf uniform vertical

Road Base unit weight = 140 pcf, thickness = 34-inches

"Poor" Soll Conditions:

Retained backfill: Unit weight = 125 pcf, friction angle = 34°, cohesion = 0 psf, (Cohesion \geq 200 psf assumed for temporary back slope cut conditions during construction.) dmax \geq 1.0 inches

Reinforced fill: Unit weight=115 pcf, friction angle = 38°, cohesion = 0 psf RSF backfill: Unit weight = 140 pcf, friction angle = 38°, cohesion = 0 psf Foundation soil: Unit weight = 126 pcf, friction angle = 30°, cohesion = 0 psf

"Fevorable" Soil Conditions:

Retained backfill: Unit weight = 125 pcf, friction angle = 40°, cohesion = 100 psf $d_{max} \ge 0.5$ -inches

Foundation soil: Unit weight = 125 pcf, friction angle = 40°, cohesion = 100 psf Reinforced fill: Unit weight = 120 pcf, friction angle = 42°, cohesion = 0 psf RSF backfill: Unit weight = 120 pcf, friction angle = 42°, cohesion = 0 psf

DESIGN SPECIFICATIONS

NO. DATE BY

63/25/11

03/29/11

- Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide, PHWA-HRT-11-026, January 2011.
- Design methods follow the ASD design methods presented in Chapter 4 of the reference Manual. No seismic design assumed.
- Conduct a subsurface Investigation in accordance with "Soils and Foundations", PHWA-NH1-06-088 (2006) and "Subsurface Investigations", PHWA-NH1-01-031, (2006).
- Design factor of safety against sliding is ≥ 1.5; Factor of safety against bearing failure is ≥ 2.5.
- A global stability analysis must be performed for each site. Factor of safety against global failure is to be ≥ 1.5.
- Performance criteria: tolerable vertical strain = 0.5% of wall height (H): tolerable lateral strain = 1.0% of b and a_b (bearing width and setback)

REVISIONS

Bev. 0

- Settlement below the RSF is assumed to be negligible. No differential settlement between abutments is assumed.
- Sliding checks were conducted at the top and bottom of the RSF to meet the minimum factors of safety in the reference manual.
- Road base thickness (h_{th}) assumes a 32-inch structure and 2-inch pavement thickness.

CONSTRUCTION SPECIFICATIONS

- Site Layout/Survey: Construct the base of the GRS abutment and wingwalls within 1.0 inch of the staked elevations. Construct the external GRS abutment and wingwalls to within 4.0.5 inches of the surveyed stake dimensions.
- Excavation: Comply with Occupational Safety and Health Administration (OSHA) for all excavations.
- 3. Compaction: Compact backfill to a minimum of 95 percent of the maximum dry density according to AASHTO-T-99 and ± 2 percent optimum moisture content In the bearing reinforcement zone, compact to 100 percent of the maximum dry density according to AASHTO-T-99. Only hand-operated compaction equipment is allowed within 3-feet of the wail face. Reinforcement extends directly beneath each layer of CMU blocks, covering > 85% of the full width of the block to the front face of the wail face.
- 4. Geosynthetic Reinforcement Placement: Pull the geosynthetic taught to remove any wrinkles and lay flat prior to placing and compacting the backfill maturial. Splices should be staggered at least 24-inches apart and splices are not allowed in the bearing reinforcement zone. No equipment is allowed directly on the geosynthetic. Place a minimum 6-inch layer of granular fill prior to operating only nubber-tired equipment over the geosynthetic at speeds less than 5 miles per hour with no sudden braking or sharp turning.
- 5. RSF Construction: The RSF should be encapsulated in geotextile reinforcement on all sides with minimum overlaps of 3.0 feet to prevent water infiltration. Wrapped corners need to be tight without exposed soil. Compact backfill material in fifts lass than 6-inches in compacted height. Grade and level the top of the RSF prior to final encapsulation, as this will serve as the leveling pad for the CMU blocks of the GRS abutment.
- GRS Wall Face Alignment: Check for level alignment of the CMU block row at least every other layer of the GRS abutment. Correct any alignment deviations greater than 0.25 inches.

8. Superstructure Placement: The crane used for the placement of the superstructure can be positioned on the GRS abutment provided the outrigger pads are sized for less than 4,000 psf near the face of the abutment wall. Greater loads could be supported with increasing distance from the abutment face if checked by the Engineer of Record. An additional layout of geosynthetic reinforcement can be placed between the beam seat and the concrete or steel beams to provide additional protection of the beam seat. Set beams square and level without dragoing across the beam seat. Set beams square and level

A. COVER SHEET AND NOTES

9. Integrated Approach Placement: Following the placement of the superstructure, geotextile reinfurcement layers are placed along the back of the superstructure, built in maximum it heights of 6-inches (maximum vertical spacing of reinforcement 5 6-inches). The top of the final wrap should be approximately 2-inches below the top of the superstructure to allow at least 2-inches of aggregate base cover over the geosynthetic to protect it from hot mix asphalt.

REINFORCING STEEL

Provide reinforcing steel conforming to ASTM A615, GR. 60.

CMU BLOCK

In colder climates, freeze-thaw test (ASTM C1262-10) should be concluded to assess the durability of the CMU and ensure it follows the standard specification (ASTM C1372). Additives can be used to reduce efforescence at the face of the blocks if they are at locations subject to de-icing chemicals.

Compresive strength = 4,000 psi minimum

Water absorption limit = 5 %

Holock = 7% " Lolock = 15% " bolock = 7%"

Note: In many construction applications CMU blocks are placed with a %" mortar joint to create an in place nominal dimension of 8" x 8" x 15".

REINFORCED BACKFILL GRADATION

Reinforced Backfill Gradation – See Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide, Table 1 or Table 2. Consider GRS CMU minimal dimensions to be the same.

GEOSYNTHETIC REINFORCEMENT TENSILE PROPERTIES

Required ultimate tensile strength = 4,800 lb/ft by (ASTM D 4595 (geotextiles) or ASTM D 6637 (geografs)) Tensile strength at 29% strain = 1,370 lb/ft

POLYSTYRENE FOAM BOARD

Provide polystyrene foam board conforming to AASHTO M230, type VI.

Factor of r each sit 0.5% of ring width	te. wal	Factor (00:	19 7. Beam Seu approxim face GRS. reinforce height (di top of the Before foi of the bea	ately 8 to 12 inches an . Place precut 4-inch t ment butt against the 1 apending on wall height i foam board. Wrap tw iding the final wrap, it	ed consists o hick foam be back face of it and requir to approxim may be neci to about 0.5	ness of the beam seat is f a minimum of two 4-inch lifts of wrappe bard on the top of the bearing bed the CMU block. Set half-height or full ad clear space) solid CMU blocks on aleby 4-inch lifts across the beam seat. Issary to grade the surface aggregate inches, to aid in seating the the bearing area.	d-		FEDERAL WESTERN FED	GRS-IBS	WIDOW -
1 NO	1	DATE	87	REVISIONS	DENIGNED BY	CROWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE ON/WONG	DATE	ORAWING NO.
	0	4/04/11		Rev. 1	7HWA	1 # 4	04/2011					

STATE	PROJECT	NUMBER
	PURCH COST TAK	

8

GRS-IBS Poor Soil Condition Quantites Per Abutment D													
HENGHT (H) (FT)	ROAD BASE I: A THICKNESS (IN)	GEOSYNTHETIC REINFROCEMENT (SQYD)	CMU BLOCK HOLLOW (EA)	CMU BLOCK SOLID (BAC H)	64 REBAR (F7)	GRS MACKFUL (CUYD)	RSF FILL (CUYD)	FOAM ^{2/} BOARD (SQFT)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FILL (CUYD)			
10.42	34	1200	710	349	652	287	52	18	54	1.4			
12.32	34	3 700	950	365	698	.999	73	18	63	1.5			
14.31	34	2100	1165	373	721	509	94	31	68	1.6			
16.22	10	2700	2455	389	766	655	223	18	77	1.7			
18.21	34	3200	1700	397	789	793	154	36	82	-1.7			
20.12	34	4000	2030	413	835	973	187	35	92	1.8			
22.1	34	4600	2305	421	858	1139	220	36	.96	1.9			
24.01	34	5600	3280	437	904	1354	267	36	206	2			

некант (н) (гегт)	ROAD BASE & a THICKNESS (IN)	GRS-IBS ABBL	CMU BLOCK HOLLOW (EACH)	сми вьоск souo (EACH)	Soil Co ME MIEAR (FRET)	ndition Quar GRS BACKFILL (CLIYD)	ntities Pe nsr nu (curro)	r Abutmer FOAM BOARD (SQF7)	ROAD BASE AGGREGATE (CUYD)	CONCRETE BLOCK WALL FILL (CUYD)
10.42	34	2000	720	349	652	176	24	28	54	2.4
12.32	34	1400	950	365	698	242	26	18	63	1.5
14.31	34	2700	1165	373	721	305	27	28	68	1.6
16.22	34	2200	1455	3.89	766	394	29	28	27	1.7
18.21	34	2700	\$700	397	789	483	35	36	82	1.7
20.22	34	3400	2030	41.8	R35	605	4.1	36	92	1.8
22.1	34	4000	2305	421	858	715	50	36	96	2.1
24.01	34	4800	1280	487	904	865	60	36	108	2

FOOTNOTES:

If The estimated materials quantities correspond to the dimensions on the accompanying plan sheets. Deviation from the dimensions on the plan sheets will void the quantities.

Foam board thickness is 4-inches (typ.).

Wingwall length = B total + H + 3-feet.

- g CMU block assumptions: solid blocks at the base of the GRS abutment from estimated scour elevation to 100-year flood event elevation (5-feet assumed here): solid blocks in setback location to beam seat (1-row assumed): hollow blocks for remaining wall height and guardrail height: concrete-filled blocks assumed 3 rows deep below bearing pad and at the top of the wall of guardwall and at all corners: wet cast coping at the top row of exposed CMU at abutment wall and wingwall: flush concrete fill in the CMU's at the top of the abutment wall under the beam seat below the clear zone. See Sheet C and D for illustrations of these details.
- § Maximum vertical spacing of reinforcement height of 1 CMU block (Hubox) in reinforced backfill zone. Maximum vertical spacing of reinforcement < 6-inches in bearing bed zone and integrated approach.
- If No overlaps in geosynthetics measured for quantities.
- 2 Design clear space (de) rounded up to the nearest 1.0 inch.
- # Geosynthetic reinforcement quantity includes RSF and IBS geotextile quantities.

	GRS-IBS Poor Soil Condition DESIGN DIMENSIONS													
WALL HENGHT (H)	WWGWALL LENGTH, L _{ave}	d.	a ₀	b	b,	0 rotal	в	ð esr	D _{PDF}	x _{/tS/}	ABUT WIDTH	WINGWAL		
(FT)	(FT)	(mg	010	(FT)	(FT)	(F7)	(FT)	(FT)	(FT)	(FT)	(FT)	(FT)		
10.42	15.63	3	7.6	2.5	3,83	9.5	8.86	11.88	2.38	2.39	37.78	14.00		
12.32	18.23	3	7.6	2.5	3.83	11.0	10.35	13.75	2.75	2.75	37.78	15.89		
14.31	79.53	4	7.6	2.5	3.83	12.5	11.86	15.63	3.73	3.13	37.76	17.79		
16.22	22.14	4	7.6	2.5	3.83	14.0	13.36	17.50	3.50	3.50	37.76	19,70		
18.21	23.44	5	7.6	2.5	3.83	15.5	14.86	19.38	4.00	3.89	37.78	21.60		
20.11	26.04	5	7.6	2.5	3.83	17.0	16.36	21.25	4.25	4.25	37.76	23.51		
22.10	27.34	. 6	7.6	2.5	3.83	18.5	17.85	23.13	4.63	4.63	37.76	25.42		
24.01	29.95	6	7.6	2.5	3.63	20.0	19.36	25.00	5.00	5.00	37.78	27.83		

	GRS-IBS Favorable Soil Condition DESIGN DIMENSIONS													
WALL HEIGHT (H)	WWGWALL LENGTH, L _{en}	₫. ^{Z/}	4.	b	ð.,	8 ₁₀₀	g	B est	D _{ASP}	r _{rst}	АВОТ WD7H	WINGWALL HEIGHT		
(FT)	(FT)	(00) :	.010	(PT)	(FT)	(FT)	(FT)	(FT)	(FT)	(F7)	(57)	(FT)		
10.42	15.63	3	7.6	2.5	3.83	6.0	5.36	7,50	1.50	1.50	37.76	14.00		
12.32	18.23	3	7.6	2.5	3.83	5.0	5.36	7.50	1.50	1.50	37.76	15.89		
14.31	19.53	.4	7.8	2.5	3.83	6.0	5.36	7.50	1.50	1.50	37.75	17.79		
18.22	22.14	4	7.5	2.5	3.63	6.0	5.36	7.50	1.50	1.50	37.76	19.70		
18.21	23,44	5	7.6	2.5	3.83	6.5	5.86	8.13	1.63	1.69	37.76	21.60		
20.11	26.04	5	7.6	2.5	3.63	7.0	6.35	8.75	1.75	1.75	37.76	23.51		
22.10	27.34	6	7.6	2.5	3.83	7.6	6.86	9.38	1.88	1.88	37.76	25.42		
24.01	29.95	6	7.6	2.5	2.82	8.0	7.36	10.00	2.00	2.00	37.76	27.83		

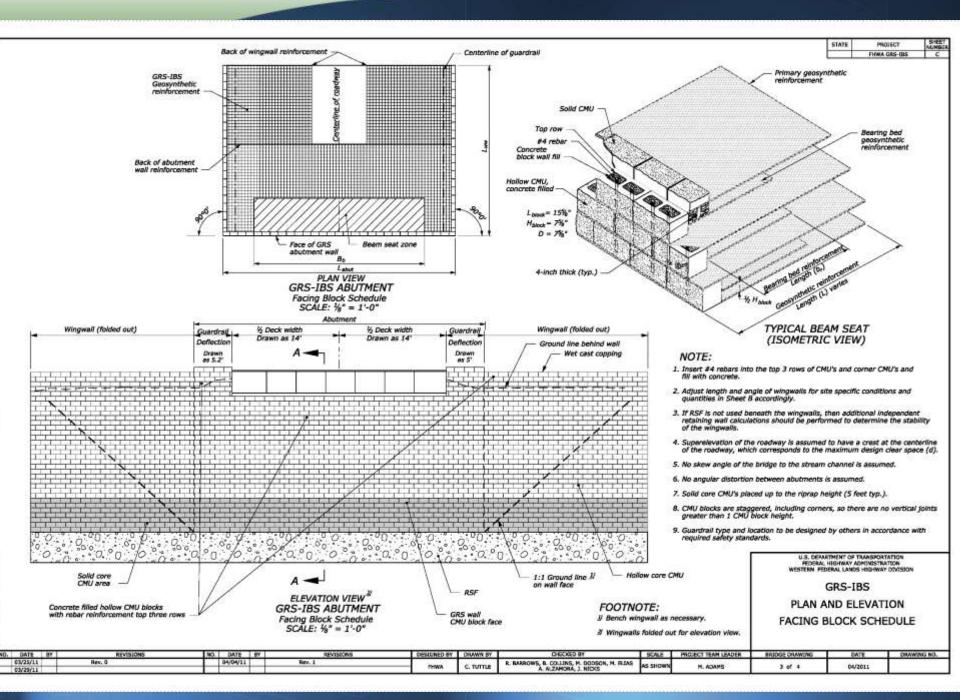
ABREVIATIONS:

- a_b = Set back distance between back of facing element and beam seat
 - B = Base length of reinforcement not including the wall face
 - b = Bearing width for bridge, beam seat
- B_n = Width of the bridge
- block = Width of CMU
- b, = Length of bearing bed reinforcement
- B_{RSF} = Width of RSF
- Btotal Total width at base of GRS abutment including the wall facing
- CMU = Concrete masonry unit
- de = Clear space from top of wall to bottom of superstructure.
- dmax Maximum partical diameter in reinforced backfill
- D_{RSF} = Depth of RSF below bottom of wall elevation
- GRS = Geosynthetic Reinforced Soll

H = Wall height measured from top of RSF to top of beam seat

Holpok = Height of CMU

- hip = Height of road base (equals height of super structure and pavement thickness)
- IBS = Integrated Bridge System
- L = Length of geosynthetic reinforcement
- Labut= Abutment width
- Looce = Length of CMU
- Leve = Wingwall length.
- RSF = Reinforced soll foundation


X_{per} = Length of RSF in front of the abutment wall face

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION WESTERN FEDERAL LANDS HIGHWAY DIVESION

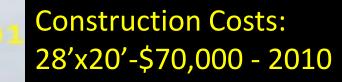
GRS-IBS

DESIGN DIMENSION QUANTITIES

NO	DATE	BY	REVISIONS	NO.	DATE	61	REVISIONS	DESIGNED BY	ORAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING ND
43	/25/11	1911	Rev. D	0,02	1.		1000-1000 AV	FHWA	C. TUTTLE	R. BARROWS, B. COLLINS, M. DODSON, M. ILLAS	ATT	H. ADAMS		04/2011	CONFERENCES OF THE
03	/29/11		V1/2067-C					FLOWA	C. TUTTUE	A. ALZAMORA, J. NICKS	10.0	PL AUAPS	6.02.4	0402031	

CONSTRUCTION Youtube Video

User Perspective Defiance County, Ohio


Construction Costs: 80'x32'-\$266,000 - 2005

Open to Traffic: 47 days

Construction Costs: 28'x20'-\$68,000 - 2008

Construction Costs 28'x20'-\$88,000 - 20

Construction Costs: 28'x20'-\$65,000 - 2010

Construction Costs: 36'x20'-\$71,000 - 2010

Construction Cost: 140'x40'-\$620,000 - 2009

User Perspective St. Lawrence County, NY

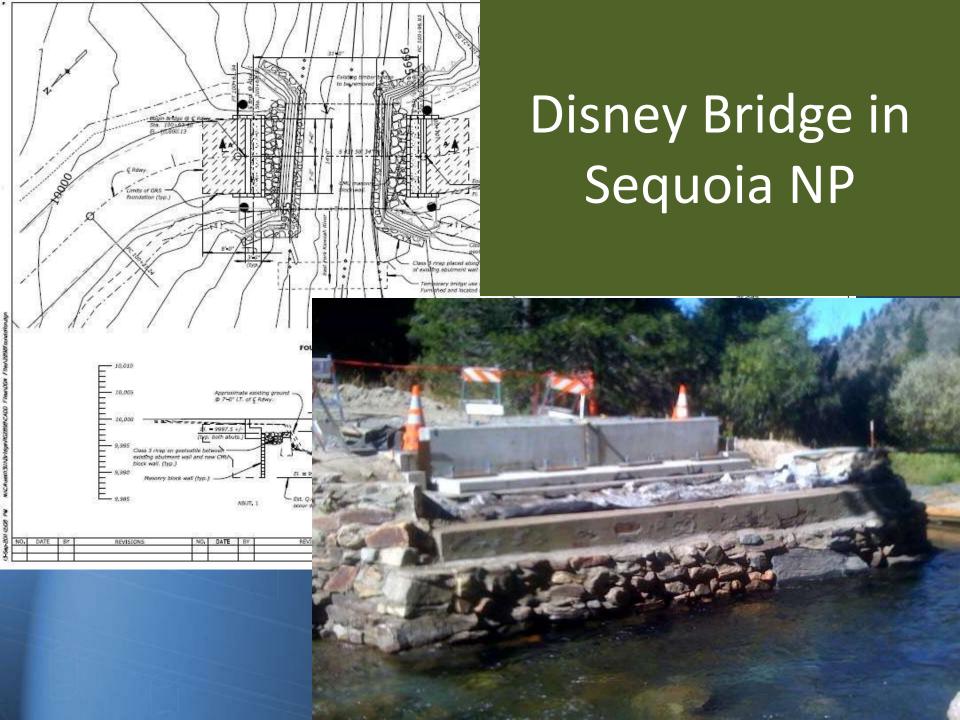
Construction costs \$240,000

CR 31 - 56'x33'- Material Cost \$165,000

CR 35 - 67'x33'- Material Cost \$180,500 Construction Cost \$310,000

CR 38 - 63'x32'- Material Cost \$175,000

User Perspective Huston Township, Pennsylvania



User Perspective Ottawa County, Oklahoma

User Perspective National Park Service

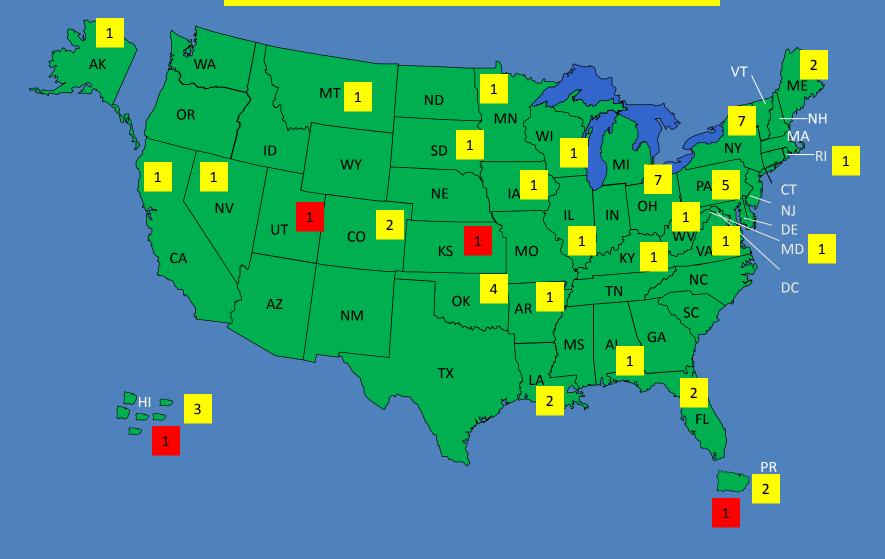
Strawberry Creek Great Basin National Park - NV

Federal Highway Administration

PROGRESS TOWARD 2012 EDC GRS IBD GOALS

Steps to Move Forward

2012 Deployment Goals


• December 2012:

 30 bridges have been designed and/or constructed using GRS-IBS on the NHS within 20 states

 75 bridges have been designed and/or constructed using GRS-IBS off the NHS

State DOT Deployment

Total of 56 project in 28 states at some stage of development from conceptual to construction

Federal Highway Administration

