Mobile Asphalt Testing Trailer Program (MATT): Recent Experience in Arizona

All images FHWA unless otherwise noted.

Arizona Pavements/Materials Conference November 15, 2018 • Tempe, AZ

U.S. Department of Transportation

Federal Highway Administration Office of Infrastructure Amir Golalipour, Ph.D. David J. Mensching, Ph.D., P.E.

Office of Preconstruction, Construction, and Pavements

- FHWA Pavement and Materials
- Binder Activities
- Asphalt Mixture Performance Tester (AMPT)
- Arizona Project Results & Discussions
- Questions

Acronyms

- AASHTO: American Association of State Highway and Transportation Officials
- ABCD: Asphalt Binder Cracking Device
- ABTL: Asphalt Binder Testing Laboratory
- AIMS: Aggregate Imaging System
- AMPT: Asphalt Mixture Performance Tester
- BBR: Bending Beam Rheometer
- CAA: Coarse Aggregate Angularity
- CC: Concentric Cylinders
- DSR: Dynamic Shear Rheometer
- DTT: Direct Tension Tester
- ETG: Expert Task Group
- Gmb: Bulk Specific Gravity
- GTR: Ground tire rubber

- HMA: Hot mix asphalt
- HQ: Headquarters
- MATT: Mobile Asphalt Testing Trailer
- MSCR: Multiple Stress Creep and Recovery
- PAV: Pressure Aging Vessel
- PEMD: Performance-Engineered Mixture Design
- PG: Performance Grading
- PRS: Performance Related Specification
- QA: Quality Assurance
- RAP/RAS: Reclaimed Asphalt Pavement/Reclaimed Asphalt Shingles
- RTFO: Rolling Thin-film Oven
- RV: Rotational Viscometer
- SSR: Stress Sweep Rutting
- TFHRC: Turner-Fairbank Highway Research Center
- WMA: Warm Mix Asphalt

Note: FHWA does not endorse products or manufacturers. Trade or manufacturers' names appear in this presentation solely for informational purposes.

Pavement & Materials Discipline

Program Office

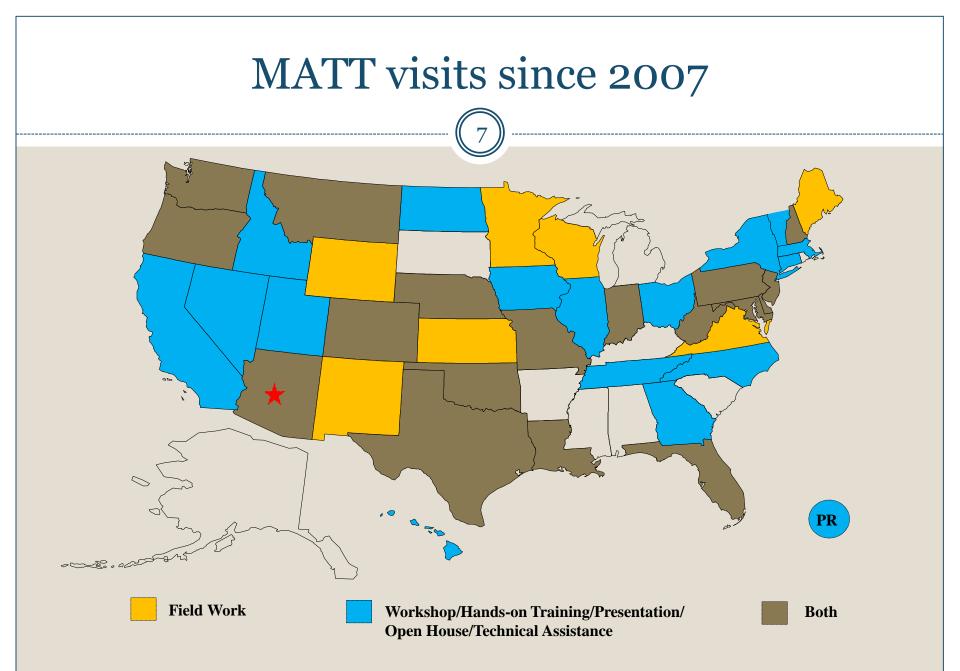
- Office of Preconstruction, Construction, and Pavements (FHWA HQ, Washington, DC)
 - ▼ Mobile Asphalt Testing Trailer (MATT)
 - Asphalt Binder Testing Laboratory (ABTL)
- Research and Development
 - o TFHRC (McLean, VA)
- Technical Services
 - Resource Center
- Divisions

Program Objective

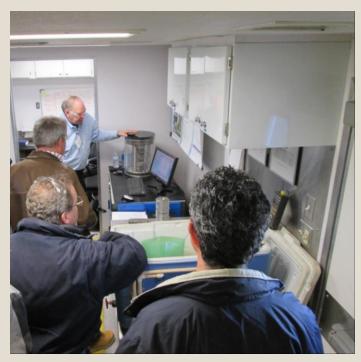
- Provide Support to National Initiatives
 - Performance-Engineered Mixture Design (PEMD)
 - o Increased Pavement Density
 - Development of New QA Concepts for HMA
 - Understanding Asphalt Rubber Testing
 - Binder Performance Testing
- Provide Assistance with State-specific Issues
 Technical Guidance
 Forensics

MATT Program History

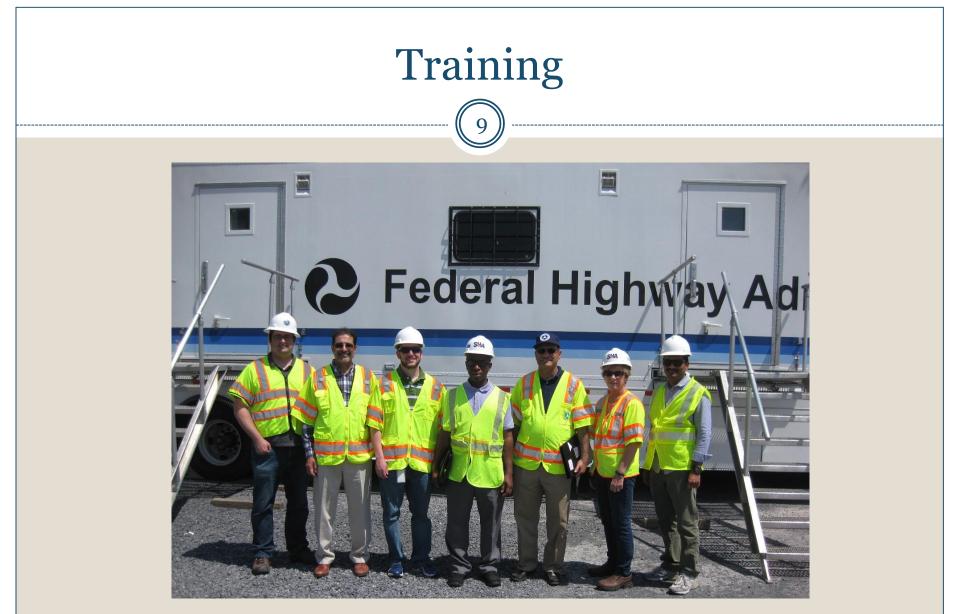
Projects began in 1988


 Demonstration Project 74: Field Management of Asphalt Mixes Using Volumetric Quality Control

Transition to Superpave implementation


- o Early 1990s
- o Classroom and hands-on training

Transition to performance-related specifications


- Shadow testing
- AMPT user since 2003
- Innovative materials and practices
 - o WMA, SMA, GTR, RAP/RAS, increased density

Technical Workshops

Training for the Maryland State Highway Administration staff

Other MATT Activities

Conferences

- Expert task group support
- NCHRP panels and project participation
- Division Office rotational assignments
- Academic journal papers and presentations

Deployment Status: Asphalt Rubber

- Seven projects between 2013 to 2015
- Collaboration with four State DOTs to evaluate their specifications based on project results
- Working with FHWA ETG to develop AASHTO standard for asphalt rubber testing

Binder Characterization

TEST PROCEDURES

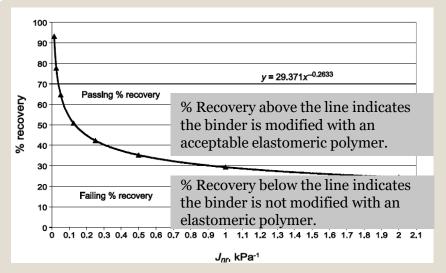
- Performance Grading
 - o AASHTO M 320
 - o AASHTO M 332 (MSCR)
 - AASHTO R 49 (Low Temperature PG)
- Solubility & Separation
 - o AASHTO T 44
 - ASTM D7173

EQUIPMENT

- RV
- DSR
- RTFO
- PAV
- Vacuum Degassing Oven
- BBR
- DTT
- ABCD (AASHTO TP 92)
- Torsional bar testing

MSCR Criteria: AASHTO M 332 - J_{nr}

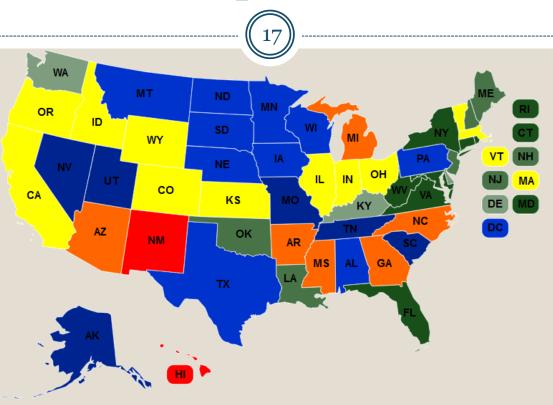
- Boundaries for J_{nr} values are established based upon traffic level.
- As traffic level increases, lower J_{nr} value is required -> basically stiffer binder.

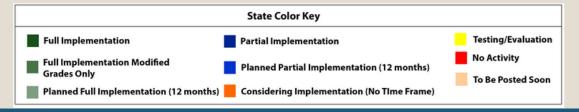

Traffic Loading	J _{nr3.2}	Intdiff	Recommended Traffic Levels
	(1/kPa)	(Percent)	
Standard Traffic (S)	≤ 4.5	Maximum 75%	< 10 million ESALs or Traffic
			Speed >70 km/h
Heavy Traffic (H)	≤ 2.0	Maximum 75%	10 to 30 million ESALs or Traffic
			Speed 20 to 70 km/h
Very Heavy Traffic (V)	≤1.0	Maximum 75%	> 30 million ESALs or Traffic
			Speed < 20 km/h
Extremely Heavy	≤ 0.5	Maximum 75%	> 30 million ESALs and Standing
Traffic (E)			Traffic (Toll plaza or Port)

MSCR Criteria: AASHTO R 92 - R%

16

- % Recovery is plotted vs. J_{nr}.
- Boundaries are established based upon measured J_{nr} values at 3.2 kPa.
- A simple above the line/below the line criteria provides the needed validation of polymer modification.


Minimum % Recovery for Measured J _{nr} values				
J _{nr} @ 3.2 kPa	Minimum % Recovery			
2.0 - 1.01	30%			
1.0 - 0.51	35%			
0.50 - 0.251	45%			
0.25 - 0.125	50%			



Source: Asphalt Institute

Good agreement has been established between **elastomeric polymer modification** and rutting resistance.

MSCR Implementation

Source: Asphalt Institute

DSR Testing Alternative: Asphalt Rubber Binder

- Can it fit within existing PG grading system?
- DSR Testing Geometry
 - Caltrans, University of California Pavement Research Center, Anton Paar, etc.
 - Concentric cylinder (CC) development testing evaluation looks promising.
 - CC test geometry may overcome specimen preparation limitations of PP geometry.
 - Draft AASHTO standard in development.

Concentric Cylinder Geometry

Advantages

- GTR modified asphalt can be measured with particle sizes up to 2 mm.
- No trimming problems and filling problems.
- No edge effects.

Low Temperature BBR Test: Binder New Parameter (Δ Tc)

- ΔTc has been identified as an important parameter related to asphalt binder durability.
 - $\circ \Delta Tc = S$ critical temp m critical temp.
- As an asphalt binder ages, ΔTc value becomes more negative.
 - Indicating a loss of relaxation properties.
- Threshold of -5 °C being evaluated as a cracking criteria.

Performance Testing

• AASHTO T 378 (former TP 79)

- Dynamic Modulus
 - × Mixture Stiffness
 - × Rutting
 - ▼ Fatigue Cracking
- Flow Number
 - × Rutting

• AASHTO TP 107

- Cyclic Fatigue
- AASHTO TP XX
 Stress Sweep Rutting (SSR)

Small Specimen Testing

- Proposed to enable field core testing
- To improve the efficiency of laboratory specimen fabrication

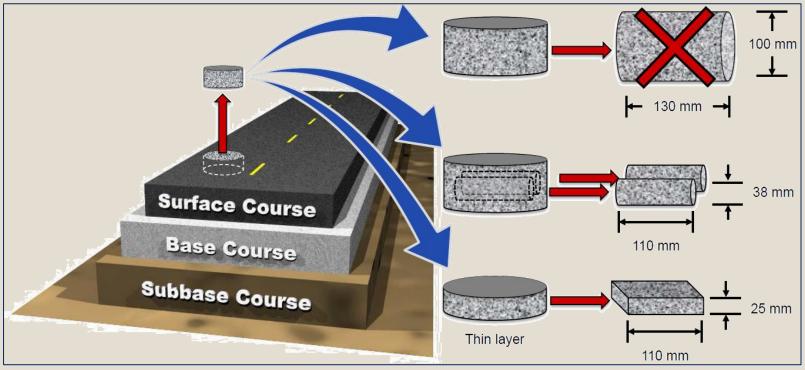


Image: North Carolina State University

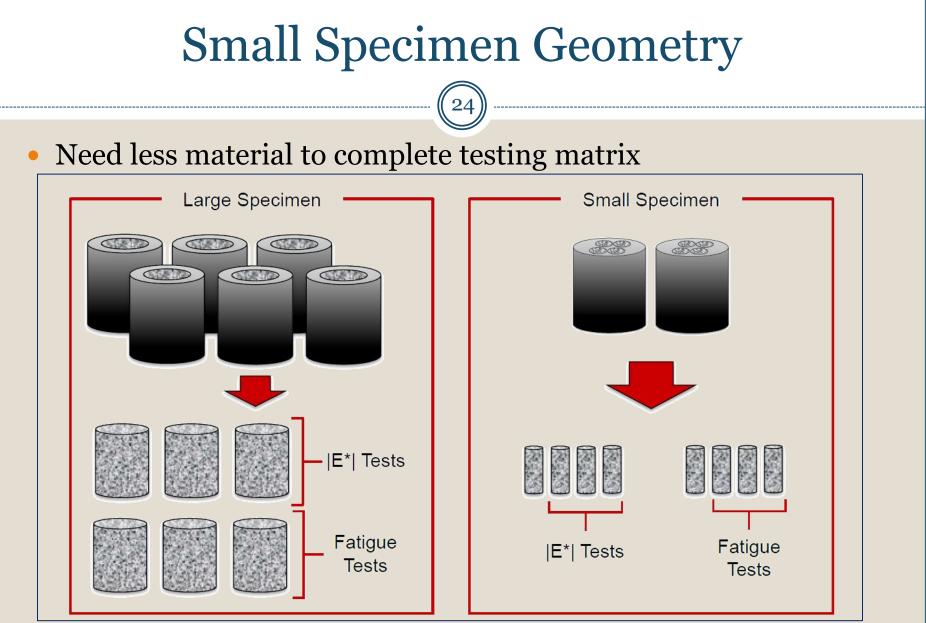
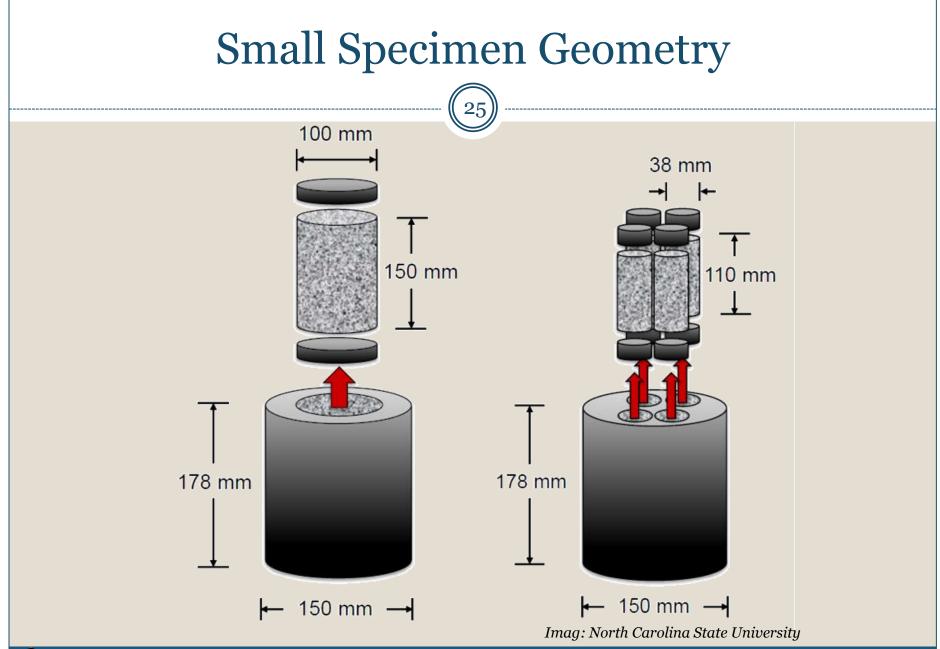



Image: North Carolina State University

Types of Small Specimen Testing

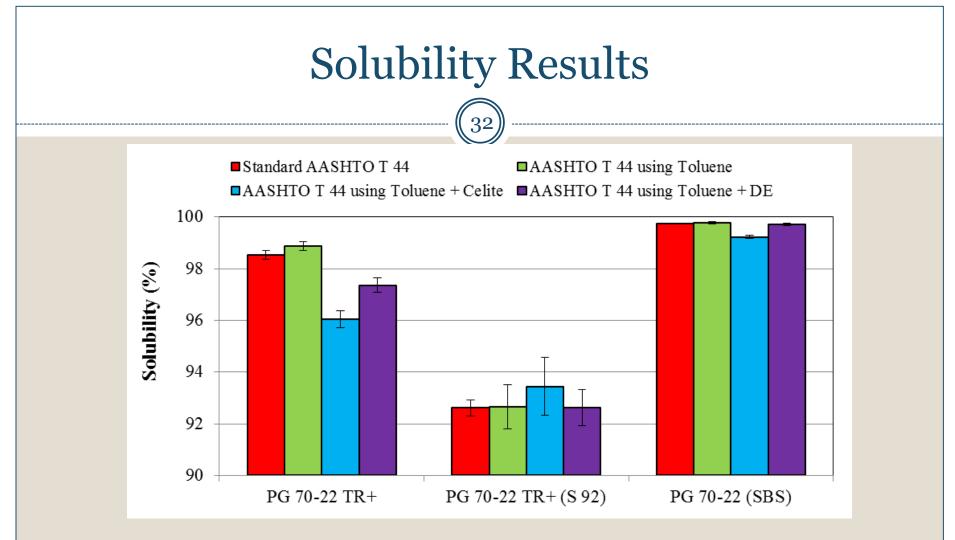
26

Small Scale Dynamic Modulus

Small Scale Cyclic Fatigue

AMPT Small Specimen Advantages

- Field core testing
- Reduced sampling and material requirements for testing
- Same data output generated from small scale testing as full scale testing



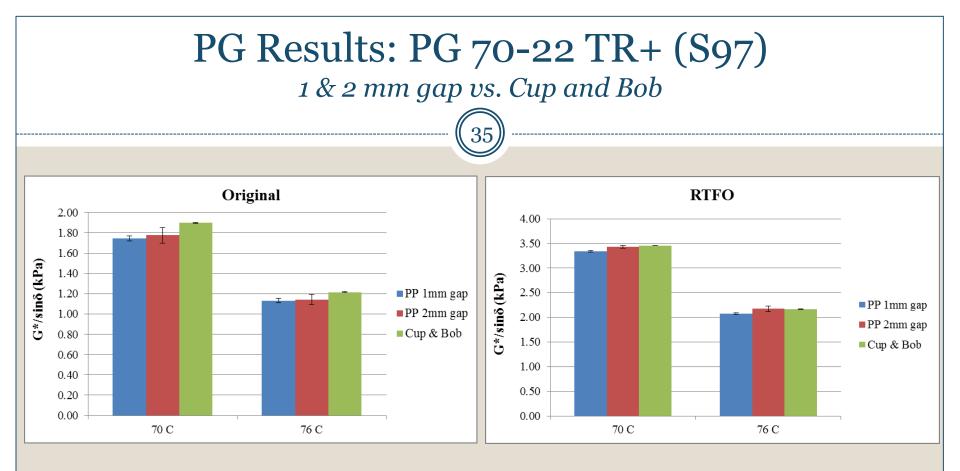
Arizona Project Description - 2015

- Open Graded Friction Course (OGFC) mixtures
- Three different Terminal blended Asphalt Rubbers
- Hybrid Binders:
 - PG70-22 TR+
 (8 % GTR + 2 % SBS; solubility limit of 97%)
 - PG70-22 TR+ S92
 (8 % GTR + 2 % SBS; solubility limit of 92%)
 - PG70-22 (contains only SBS)

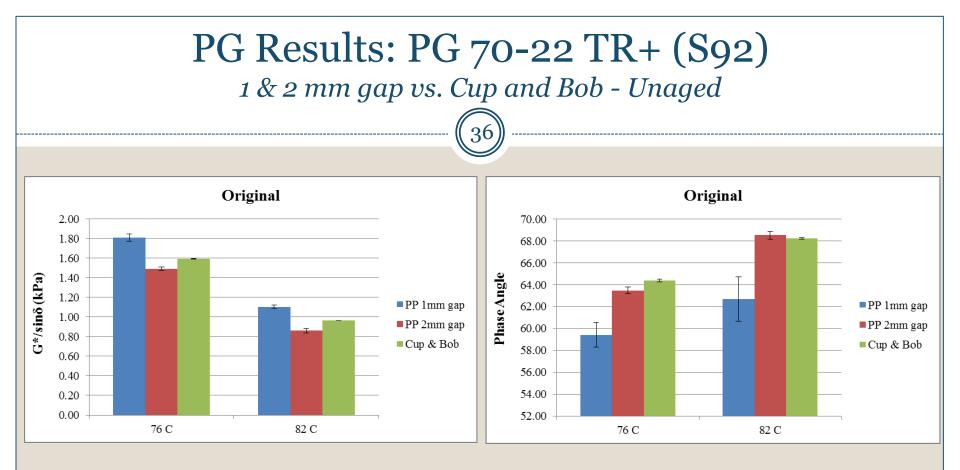
- Topics investigated in this project
 - Solubility
 - Separation
 - DSR testing: gap size effect
 - Long term conditioning

- UW-Madison MARC have proposed changes to the standard
 - Use of toluene as the solvent
 - The addition of an analytical filter: To <u>increase the filter area</u> and reduce the potential for the fiberglass filter to <u>become clogged</u> during testing
- Analytical Filters used in this study
 Celite
 - Diatomaceous Earth (DE)

- Use of toluene as the solvent
- The addition of an analytical filter
- Some differences in solubility


Solubility Results: Analysis of Variance					
Solubility Test Variation	PG 70-22 TR+	70-22 TR+ (S 92)	PG 70-22 (SBS)		
Toluene	Not significant	Not significant	Not significant		
Toluene + Celite 505	2.47 % lower	Not significant	0.52 % lower		
Toluene + Diatomaceous Earth	1.16 % lower	Not significant	Not significant		

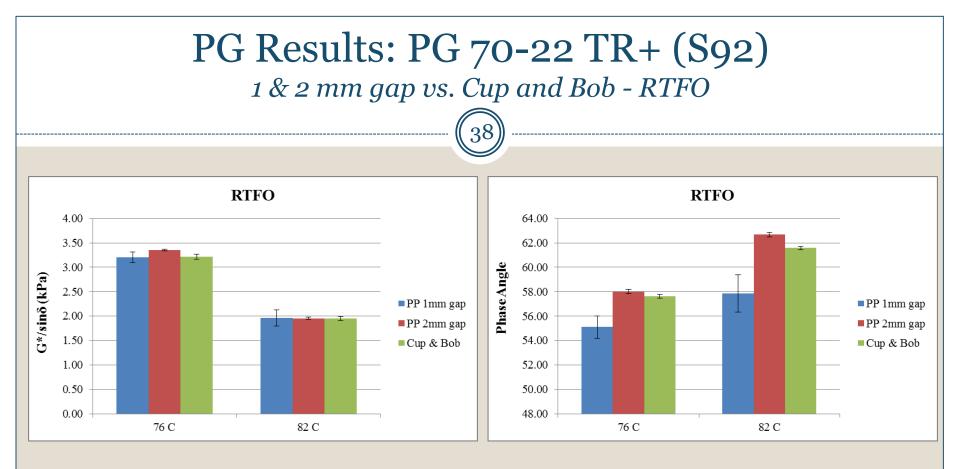
- Compared to Standard Method, AASHTO T 44.
- Not a statistically significant difference using toluene compared to trichloroethylene.
- The differences in solubility when using an analytical filter aid were 0.5 to 2.5 percent: significant considering solubility is normally specified to the nearest 0.1 percent !


Separation Results

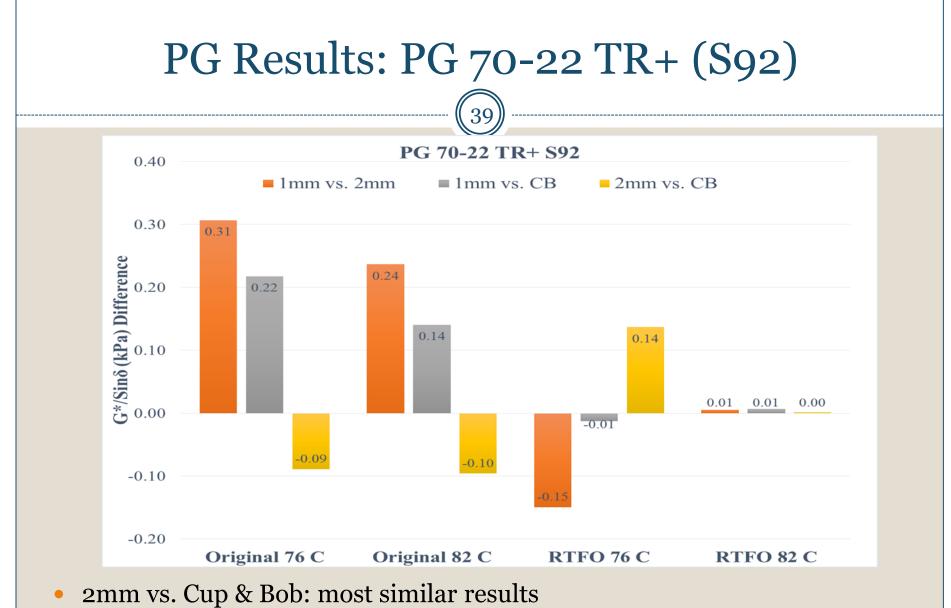
		34)	
Binder	Continuous High Temperature Grade for Top Specimen, (°C)	Continuous High Temperature Grade for Bottom Specimen, (°C)	Continuous High Temperature Grade Difference Top- Bottom, (°C)
PG 70-22 TR+	80.7	81.0	-0.3
PG 70-22 TR+ (S 92)	78.2	96.6	-18.4
PG 70-22 (SBS)	76.7	78.3	-1.5

- Separation tests conducted following ASTM D7173: samples are stored in vertical tubes in an oven at 163 °C for 48 hours
- Test specimens taken from the top and bottom of the vertical storage tube are measured using AASHTO T 315
- GTR is separating and sinking to the bottom of the separation tube.

- Same PG grade
- Cup & Bob (CC 17) slightly higher G*/sin δ value: perhaps due to trimming or shelf-aging of material
- Cup & Bob: smallest values of standard deviation

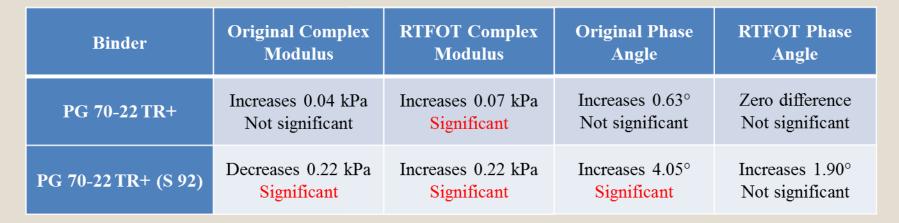

- PP 1mm shows different material behavior
- PP 1mm: possible particle interactions with plates -> higher stiffness & more elastic type behavior
- Similar results for PP 2mm and Cup & Bob

		sults: 1 vs 5 92) – Origino 37) – – –			
Item	1 mm gap Complex Modulus, (kPa)	1 mm gap Phase Angle, (°)	2 mm gap Complex Modulus, (kPa)	2 mm gap Phase Angle, (°)	
Replicate 1	1.52	58.6	1.34	63.3	
Replicate 2	1.59	60.2	1.34	63.3	
Replicate 3	NA	NA	1.32	63.8	
Average	1.55	59.4	1.33	63.5	
Standard Deviation	0.05	1.17	0.01	0.26	


• For gap sizes of 1 to 2 mm: when there is an <u>interaction of the</u> <u>rubber particles with the testing plates</u>->

 \uparrow gap : \downarrow variability, \downarrow the complex modulus, \uparrow the phase angle.

• Lower $G^*/sin\delta$ and phase angle for 1mm


- Same PG grade
- PP 1mm: possible particle interactions with plates -> *lower phase angle (more elastic type behavior)*
- Differences decreased after RTFO conditioning

• Differences decreased after RTFO aging ...

DSR PG Results: 1 vs. 2 mm gap

Statistical Analysis – Effect of 1mm increase in gap

- Only PG 70-22 TR+ (S 92) original binder show effects consistent with particle interaction.
- When used to test binders modified with GTR, this gap may be too small to accommodate the rubber particles.
- Concentric Cylinder (Cup & Bob) needed as testing geometry for these materials.

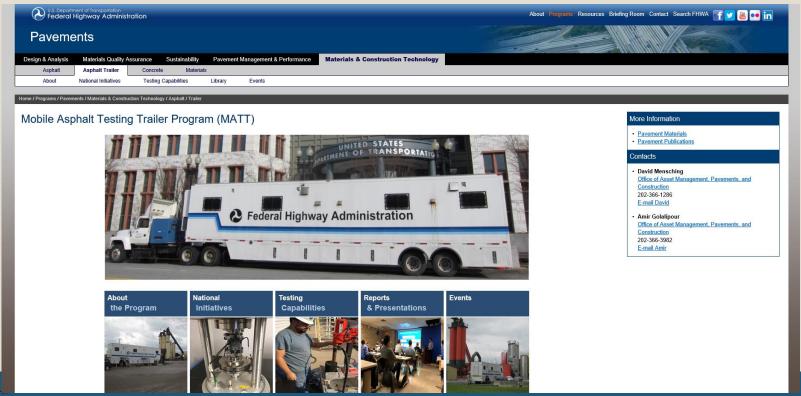
- Solubility: **Toluene** was found to be an acceptable alternative to <u>Trichloroethylene</u> as a solvent for solubility testing.
- Separation: **GTR**, due to its <u>higher specific gravity</u> than neat asphalt binder, is separating and sinking to the bottom of the separation tube. Separation of TR+ (S 92) binder during <u>non-agitated long-term storage</u> should be expected.
- DSR testing: Results indicate that **particle interaction** with the plates likely occurs when testing the PG 70-22 TR+ (S 92) using the <u>parallel plate geometry</u>.

• Separation: Needs to be considered for Asphalt Rubber Material. (ASTM D7173)

DSR testing: All Asphalt Rubber Binders are not the same ! Some may work with PP and some not.
 Cup & Bob is a scientific & practical solution.

• DSR testing:

- **PP issues**: trimming, edge effect, particle interactions, rubber swelling, rubber mesh size and percentage, etc.
- **Cup & Bob**: no trimming, exact volume filling, no edge effect


• If you have upcoming projects for which you would like MATT technical assistance, contact:

Amir Golalipour, <u>amir.golalipour.ctr@dot.gov</u>, 202.366.3982
Dave Mensching, <u>david.mensching@dot.gov</u>, 202.493.3232

https://www.fhwa.dot.gov/pavement/asphalt/trailer/

Thank You – Questions?

- Trailer is parked outside! Come in for a tour!
- We're here to assist! Please stop by anytime for more discussion.

