Use-phase and the Life-Cycle

Andrew Fraser, Postdoctoral Researcher
Civil, Environmental, & Sustainability Engineering
Arizona State University

Sustainable Pavements Workshop
March 22, 2017
Pavement Life Cycle Assessment Framework

John T. Harvey, Jesp Meijer, Hasan Ozer, Imad L. Al-Qadi, Arash Saboort, and Alissa Kendall

Applied Pavement Technology, Inc.
115 West Main Street, Suite 400
Urbana, IL 61801

Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC. 20590

The authors greatly appreciate the technical reviews and feedback provided by Dr. Tom Van Dam and Dr. Mark Snyder.

Abstract

Awareness of the importance of environmental protection, and the possible impacts associated with the production, use, and retirement of products, has generated considerable interest in the use of assessment methods to better understand and address those impacts. Life-cycle assessment (LCA) is one of the techniques developed for this purpose. LCA is a structured evaluation methodology that quantifies environmental impacts over the full life cycle of a product or system, including impacts that occur throughout the supply chain. LCA provides a comprehensive approach for evaluating the total environmental burden of a product by examining all the inputs and outputs over the life cycle, from raw material production to the end-of-life (EOL). For pavements, this cycle includes the material production, design, construction, use, maintenance and rehabilitation (M&R), and EOL stages.

LCA has a commonly accepted standard method (published by the International Organization for Standardization [ISO]), however, specifics within this method vary greatly from one application to another. Additionally, there are no widely accepted standards that focus on pavements-LCA. This pavement LCA framework document is an important first step in the implementation and adoption of LCA principles in the pavement community within the U.S. A framework for performing an LCA specific to pavement systems along with guidance on the overall approach, methodology, system boundaries, and current knowledge gaps are presented in this document.
Identifying opportunities to improve the environmental performance of products and production systems

Inform and guide decision makers as part of the strategic planning process

Identify trade-offs in decision making across all life-cycle stages and multiple environmental and other indicators
Maricopa GHG Investment

Greenhouse Gas Emissions (mmmt CO₂e)

- Roadway Maintenance
- Roadway Construction
Automobile Life-cycle Emissions per Passenger Mile Traveled

Reduction Opportunities

Santero et al. 2011, Methods, Impacts, and Opportunities in the Concrete Pavement Life Cycle, MIT Concrete Sustainability Hub
Cost of Conserved GHG Emissions

Mechanistic Empirical Pavement Design Guide (MEPDG) model. Advanced designs tools, such as MEPDG, can help to define when M&R trigger levels are reached.

Santerno et al. 2011, Methods, Impacts, and Opportunities in the Concrete Pavement Life Cycle, MIT Concrete Sustainability Hub
Use Phase and Tailpipe Emissions

- Greenhouse Gas Emissions (mmt CO₂)

- Vehicle Tailpipe
- Roadway Maintenance
- Roadway Construction
Vehicle emissions resulting from the use of the infrastructure are potentially an order(s) of magnitude greater than the cumulative construction and maintenance emissions burden.

A portion of these emissions can be attributed to pavement attributes and construction and maintenance activities.
• Construction, maintenance, and rehabilitation activities will cause changes to traffic flow, traffic speed, delay, and potentially increase VMT due to diversions.

• Off-peak activities can reduce these impacts but may be partially offset by emissions associated with lighting for nighttime construction.

• Pavement roughness, macro texture, and structural response affect vehicle fuel economy and have a significant environmental impact.

• In some cases rough pavement texture can function as a safety feature. In such instances, a tradeoff is made between safety and vehicle emissions.
Greenhouse Gas Process Sensitivity

Materials
Transportation
Onsite Equipment
Traffic Delay
Carbonation
Roadway Lighting
Albedo: Urban Heat Island
Albedo: Radiative Forcing
Rolling Resistance: Structure
Rolling Resistance: Roughness

Mg CO$_2$e per lane-km

Greenhouse Gas Priority Ranks

<table>
<thead>
<tr>
<th>Priority rank</th>
<th>Life-cycle component</th>
<th>Ideal GWP scenario</th>
<th>Worst GWP scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Rolling resistance: roughness</td>
<td>Smooth pavements with low vehicle traffic.</td>
<td>Rough pavements with high vehicle traffic.</td>
</tr>
<tr>
<td></td>
<td>Rolling resistance: structure</td>
<td>High stiffness pavement structures on low-traffic sections. Low truck traffic (AADTT).</td>
<td>Low stiffness pavement structures on high-traffic sections. High AADTT.</td>
</tr>
<tr>
<td>②</td>
<td>Traffic delay</td>
<td>Pavement sections with low traffic or where capacity is much higher than demand. Sections with readily available detours. Use of lane closures during off-peak traffic periods.</td>
<td>Pavement sections with high traffic or where capacity is comparable to demand. Sections where detours are not readily available. Lane closures occur during peak traffic periods.</td>
</tr>
<tr>
<td></td>
<td>Transportation</td>
<td>Low overall material demand. Locally available materials, especially aggregates. Use of in situ recycling strategies. Any long-distance travel utilizes efficient transportation modes.</td>
<td>High overall material demand. Materials need to be shipped over long distances, especially aggregates. Long-distance travel using inefficient modes. Use of virgin materials for each process.</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Pavements with low structural demands (e.g., low AADTT, temperate climate) that require less material. Use of recycled or other low-impact materials. High quality construction practices that facilitate longer service lives.</td>
<td>Pavements with high structural demands (e.g., high AADTT, extreme climate) that require more material. Use of virgin materials. Low quality construction practices that decrease pavement service lives.</td>
</tr>
<tr>
<td></td>
<td>Albedo: radiative forcing</td>
<td>High albedo pavements (e.g., fresh concrete).</td>
<td>Low albedo pavements (e.g., fresh asphalt).</td>
</tr>
</tbody>
</table>
Greenhouse Gas Priority Ranks

<table>
<thead>
<tr>
<th>Priority rank</th>
<th>Life-cycle component</th>
<th>Ideal GWP scenario</th>
<th>Worst GWP scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Roadway lighting</td>
<td>Light colored pavements on freeway or other roadway classifications with low lighting requirements.</td>
<td>Dark colored pavements on arterials or other roadway classifications with high lighting requirements.</td>
</tr>
<tr>
<td></td>
<td>Albedo: urban heat island</td>
<td>High albedo (e.g., fresh concrete) pavements in sparsely populated areas. Temperate climates with low air conditioning demand.</td>
<td>Low albedo pavements (e.g., fresh asphalt) in dense urban environments. Hot weather climates with high air conditioning demand.</td>
</tr>
<tr>
<td></td>
<td>Carbonation</td>
<td>High surface area of exposed concrete. Concrete with high cement content and porosity. High humidity and temperature climates. Concrete rubbliized and exposed at the end of its life.</td>
<td>Concrete surface is buried under other pavement layers. Concrete has a low cement content and porosity. Low humidity and cold temperature climates. Left intact at its end of life.</td>
</tr>
<tr>
<td></td>
<td>Onsite equipment</td>
<td>Projects with few construction activities over the life cycle. Use of off-site processes (allocated to ‘materials’) to manufacture materials. Small projects that utilize short and straightforward construction processes.</td>
<td>Projects with many construction activities over the life cycle. Heavy use of in situ recycling processes which require onsite materials production. Large projects requiring multiple layers and lifts.</td>
</tr>
</tbody>
</table>
Do improvements to infrastructure lead to emissions benefits for vehicles?

- Electricity: 30%
- Transportation: 26%
- Industry: 21%
- Commercial & Residential: 12%
- Agriculture: 9%

U.S. Environmental Protection Agency (2014).
Do improvements to infrastructure lead to emissions benefits for vehicles?
Life Cycle Assessment

Step 0: Demolition and Removal of Existing Infrastructure

What are the existing conditions and what equipment is required?

What is done with old material? How far is it transported?

Step 1: Construction of New Infrastructure

1) Material Selection
 Flexible vs. Rigid Pavement

2) Cross Sectional Design
 Expected Traffic Loadings and Design Life

- Does Texas DOT and City of El Paso use recycled materials in pavements?
- What is the source of the materials? How far is it transported?
- Are there any design elements unique to El Paso or Texas?

Step 2: Maintenance of Infrastructure

What are the maintenance practices of TX-DOT and the City of El Paso?

How does the maintenance requirement change from the old infrastructure to the new?
Energy Use

Resource Use

Renewable

Non-Renewable

Emissions

Toxicity

Water

Waste

Climate Change

Ozone Depletion

Acidi-fication

Eutrophication

Tropospheric Ozone

Respiratory

Carcinogenic

Non-Carcinogenic

Ecotoxicity

Fresh Water Use

Hazardous

Non-hazardous
Energy Use

Resource Use

Renewable

Non-Renewable

Emissions

Climate Change

Ozone Depletion

Acidification

Toxicity

Respiratory

Carcinogenic

Non-Carcinogenic

Hazardous

Non-hazardous

Water

Fresh Water Use

Ecotoxicity

Waste
Some impacts are global – Climate Change

Other impacts are Local - Respiratory
Vehicle Activity

Link-Level Average Speed

×

Emission Factors

MOVES

Link-Level VMT

×

Speed-Based EF

Emissions

Total Emissions
Use Phase and Tailpipe Emissions

Induced Demand
“Field of Dreams” Principle
Preliminary findings suggest that traffic flow improvements at the project level do not necessarily translate into emission benefits across a larger network.

- Combination of induced demand, downstream network capacity constraints, and UE vehicle rerouting lead to additional congestion and increased VMT → Increased Emissions.
Conclusions

- Changing pavement systems to improve environmental sustainability is a complex process.
- LCA can help guide the decision making process regarding changes to policies and practices to reduce impacts of pavements.
- LCA as a method is data driven and there are currently limited tools available.
- FHWA Tech Brief – Life Cycle Assessment of Pavements (FHWA-HIF-15-001, October 2014)
- FHWA Full Report - Pavement Life Cycle Assessment Framework (FHWA-HIF-16-014, July 2016)
Questions?

andrew.fraser@asu.edu
Greenhouse Gas sensitivity to ten most influential parameters on six urban roadway classifications

Santero et al. 2011, Methods, Impacts, and Opportunities in the Concrete Pavement Life Cycle, MIT Concrete Sustainability Hub
Comprehensive Approaches

- Clear need for life-cycle assessment
 - Materials
 - Construction
 - Use
 - End-of-life
- Traveled way makes up only a fraction of surface area

Upfront investments can lead to massive societal economic and environmental gains.
Materials & Methods
- Wearing Course
- Subbase
- Shoulders
- Embankments

Roughly 90 life-cycle components

Indicators
- Costs
- Energy
- Water
- VOC
- PM
- SO₂
- CO₂
- CO
- NOₓ
- CO₂
- NOₓ