Shane Underwood, Ph.D.
Assistant Professor,
School of Sustainable Engineering and the Built Environment
Co-Director,
The National Center of Excellence on SMART Innovations
Senior Sustainability Scientist,
Global Institute of Sustainability
Special Session

The University of Arizona

Northern Arizona University

ASU
Special Session
Fibers in Pavements

how do they work?

what types of fibers are used in PCC/AC?

do they really improve performance?

so what makes it sustainable?
Straw reinforcement of mud bricks dates back at least 3500 years to the Mesopotamians.
1992 vs 2014
Basic Role of Fibers

- **Portland cement concrete**
 - Bridge cracks that develop in PCC.
 - Increase ductility
 - Reduce permeability

- **Asphalt concrete**
 - Increase viscosity of binding materials and prevent draindown in OGFC and SMA mixtures
 - Improve crack resistance and extend fatigue life
Mechanical Benefits

- Toughness is the ability of a material to absorb energy and plasticially deform without fracture.
- Resistance of material to fracture when it is stressed.
Toughness

Reference: Cement & Concrete Institute
http://www.cnci.org.za

Crack Bridging and Toughness

- **Mixture**
- **Mortar Macro-Damage**
- **Mastic/Paste Micro-Damage**

- 3-4 in.
- ~ 0.5 - 0.25 in.
- ~ 0.05 - 0.02 in.
Fibers used in Portland Cement Concrete

- Steel fibers
- Glass fibers
- Carbon fibers
- Cellulose fibers
- Polypropylene
- Nylon fibers
Steel Fibers

- Added between approximately 33 and 265 lb/cy
 - 0.25% and 2.0% by volume
- 0.017 to 0.04 in. diameter
- 0.5 in. to 2.5 in. length
 - Longer = better reinforcement
 - Shorter = better workability
- Improve abrasion and impact resistance
Synthetic Fibers

- Man-made fibers from petrochemical and textile industries
 - Acrylic, aramid, carbon, nylon, polyolefin
- Primary use in ultra-thin whitetopping
 - Typical dosage = 3 lb/cy fibrillated polypropylene
- Benefits
 - Reduce plastic shrinkage, increased toughness, reduced settlement of aggregate particles

Source: Mobasher
Fibers used in Asphalt Concrete

- **Natural**
 - Cotton, cellulose, coconut, bamboo

- **Non-Synthetic**
 - Asbestos, glass, carbon, mineral fiber

- **Synthetic**
 - Polypropylene, polyester, aramid
Cellulose and Mineral Fibers in Asphalt Concrete

- Pellitized or loose fibers
- Approximately 0.2 in. length
- Dosage of 0.3-0.4% of total mixture mass
- Used to primarily control draindown in SMA, OGFC, and Porous Asphalt
Synthetic Fibers in Asphalt Concrete

- Single type or blends to reinforce asphalt concrete matrix.
 - Polypropylene
 - Polypropylene + Aramid
- Dosed at 1 lb of fiber per ton of mix
Synthetic Fibers in Asphalt Concrete

Introduction
Synthetic Fibers in Asphalt Concrete

Introduction
Testing Program

- Dynamic modulus
 - AASHTO T-342
- Fracture
 - C* fracture test
- Axial fatigue
- Permanent deformation
 - Flow number

Test Without Rest Periods

![Diagram showing test setup and strain over time](image-url)
Fatigue Performance of FRAC

Dynamic Modulus (kPa) vs. Reduced Frequency, fr
- Fiber-Reinforced
- Control

Number of Cycles to Failure
- Fiber-Reinforced
- Control

Tensile Strain (με)
- Fiber-Reinforced
- Control

Tests Without Rest Periods

Time

Strain

Test Without Rest Periods
Fatigue Performance of FRAC

Research at FHWA

<table>
<thead>
<tr>
<th>Strain, (\mu\varepsilon)</th>
<th>Penn DOT Mixes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatigue Ratio</td>
</tr>
<tr>
<td></td>
<td>SBS/C</td>
</tr>
<tr>
<td>150</td>
<td>4.91</td>
</tr>
<tr>
<td>250</td>
<td>3.51</td>
</tr>
<tr>
<td>350</td>
<td>2.81</td>
</tr>
<tr>
<td>450</td>
<td>2.38</td>
</tr>
<tr>
<td>550</td>
<td>2.08</td>
</tr>
<tr>
<td>650</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Li and Gibson, 2014
Fracture Performance of FRAC

- Up to 50% increase in peak strength
- Fracture energy increases of up to 40%
Permanent Deformation in FRAC

![Graph showing permanent deformation over number of loading cycles.](image-url)
Summary of Results Report

1 lb/ton Fiber-Reinforced Mixtures

<table>
<thead>
<tr>
<th>Cracking</th>
<th>Rutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue Life</td>
<td>Fracture Resistance</td>
</tr>
<tr>
<td>+3 times</td>
<td>+20%</td>
</tr>
</tbody>
</table>
Fatigue Performance of FRAC

Source of Fatigue Improvement

Unaltered Synthetic Fiber

Approximately 10 µm

Agitated Synthetic Fiber

Approximately 100 nm
LCCA Analysis

- Long term benefits of fiber scenario outweigh the conventional asphalt concrete.

- For study case
 - Present net worth savings of 17% or $35,000 per mile/lane over a 50 year period.
 - Equivalent annualized cost difference of up to $1,650 per mile/lane/yr.
Fibers are used in paving materials for multiple purposes.

- To improve cracking resistance
- To improve abrasion resistance
- Stabilize the binding structure

Fibers used in PCC are primarily steel and synthetic.

Fibers used in AC are primarily cellulose and mineral fibers and synthetic fibers.
Wrap-Up

- Improvements in fatigue and permanent deformation results from the addition of poly-aramid fiber blends in asphalt concrete.
- Poly-aramid fibers do provide a reinforcement effect that maintain material integrity higher levels of microdamage and ultimately extend the fatigue life of the material.
Thank You

Shane.Underwood@asu.edu