“An Overview of Pavement Durability Cracking Distress in Pavement Systems”

by

Dr. M. W. Witczak

Emeritus Professor University of Maryland
Emeritus Professor Arizona State University
Partner, ZW Consultants LLC

11th Arizona Pavements/Materials Conference

19-20 November 2014
Phoenix, Arizona
AASHTO MEPDG Predicted Distresses

Fatigue Cracking

Thermal Cracking

Longitudinal Cracking

Rutting
What a 2 Billion ESAL Highway Looks Like (Before Opened To Normal Traffic)
Severely Rutted Pavement!!
Severely Fatigue Cracked
Thermal Cracking

Low Temperature Cracking
HMA Cracking Due To Durability / Shrinkage
Durability Cracking in Residential Streets
Durability Cracking in Residential Streets
Durability Cracking in Parking Lot Pavements
The Impact Of Top Down Durability Cracking May Lead To:
Full Destruction of Load Carrying Ability of Pavement Structure
Some Aspects of Durability Cracking

• The Profession currently has a Much Better Technical Level of Understanding / Design Methodologies to Accommodate:
 • Pavement Rutting
 • Fatigue Cracking
 • Thermal Fracture

Compared to our Understanding and Ability to Eliminate Durability Cracking
Some Aspects of Durability Cracking

• There is NO Difference in the Future Performance of a Pavement System Possessing Full Depth Cracking Caused By:
 • Structural (Load) Induced Cracking OR
 • Durability (Non Load) Induced Cracking

Both Cracking Forms Destroy the Structural Integrity of the Pavement System and Will Lead to the Necessity to Have Major Reconstruction of the Entire Pavement Structure
Some Aspects of Durability Cracking

• Major Causes of Durability Cracking

 • Mix Design / Construction Considerations (eg Low AC% / High Va%)

 • Construction Related Issues
 – Excessive Short Term Binder Stiffness (G_b^*)
 – Lack of Specification for Actual In-Situ Binder Stiffness
Some Aspects of Durability Cracking

- All Durability Distress is Greatly Enhanced in Frequency and Severity through Extremely Abnormal Environmental Conditions of:
 - High Annual Temperatures and/or
 - High Annual Rainfall
Some Fundamentals of Mix Design Practice
Fundamental World Philosophy of Asphalt Mixture Design

— “Always Use as Much Asphalt as the Mix will Tolerate and still be Stable to Resist Rut Deformation and Shear”
Contributing Mix Factors of Distress

- **AC Distress Modes**
 - Moisture Susceptibility
 - Raveling
 - Thermal Fracture
 - Alligator Fatigue Fracture
 - Longitudinal Fatigue Fracture
 - Block Cracking
 - Ageing

- **Major Contributing Factors**
 - Low Vb (AC%)
 - High Va%
Contributing Mix Factors of Distress

- **AC Distress Modes**
 - Rutting
 - Shoving

- **Major Contributing Factors**
 - High Vb (AC%)
 - Low Va%
Impact of Vb (AC%) Upon Distress

Desirable AC%
Principle of TAI MS-2 Mix Design Procedure

- TAI Marshall followed process of classical, historical USACE procedure until approximately 15+ years ago

- At that time, an important addition to the procedure was made by TAI.

- It added a minimum Vb criteria to ensure that enough asphalt was always added to the mix to properly coat all aggregate particles with the proper film thickness to resist common durability problems associated with
 » Moisture Susceptibility (Stripping)
 » Raveling
 » Excessive Field Aging
 » Significantly Enhance Fracture Resistance of Mix
TAI MS-2 Minimum Vb

Min VMA @ Va% (Selected in Marshall)

<table>
<thead>
<tr>
<th>Dnom</th>
<th>Va=3</th>
<th>Va=4</th>
<th>Va=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>½”</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>¾”</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>1”</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>1 ½”</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2”</td>
<td>9.5</td>
<td>10.5</td>
<td>11.5</td>
</tr>
</tbody>
</table>
TAI MS-2 Minimum Vb

- **Recognize** $V_b(\text{min}) = V_{MA}(\text{min}) - V_a$

<table>
<thead>
<tr>
<th>Dnom</th>
<th>$V_a=4$</th>
<th>$V_a=6$</th>
<th>$V_a=8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>½”</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>¾”</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1”</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1½”</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2”</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>
First Major Conclusion

Regardless of Va Selected in Marshall

Min $V_b = f(D_{nom})$

<table>
<thead>
<tr>
<th>D_{nom}</th>
<th>Min V_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>13</td>
</tr>
<tr>
<td>½”</td>
<td>10</td>
</tr>
<tr>
<td>¾”</td>
<td>9</td>
</tr>
<tr>
<td>1”</td>
<td>8</td>
</tr>
<tr>
<td>1 ½”</td>
<td>7</td>
</tr>
<tr>
<td>2”</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Second Major Conclusion

- \(\text{Since } VMA = V_a + V_{beff} \)
- \(\text{Min } VMA = f(D_{nom} \& V_a \text{ Marshall}) \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Dnom} & \text{MinVb} & V_a=4\% & V_a=6\% & V_a=8\% \\
\hline
\#4 & 13 & 17 & 19 & 21 \\
\frac{1}{2}'' & 10 & 14 & 16 & 18 \\
\frac{3}{4}'' & 9 & 13 & 15 & 17 \\
1'' & 8 & 12 & 14 & 16 \\
1 \frac{1}{2}'' & 7 & 11 & 13 & 15 \\
2'' & 6.5 & 10.5 & 12.5 & 14.5 \\
\hline
\end{array}
\]
Third Major Conclusion

\[\text{Min } Vfa = f(D\text{nom } & \text{ Va-Mc Marshall}) \]

<table>
<thead>
<tr>
<th>Dnom</th>
<th>MinVb</th>
<th>Va=4%</th>
<th>Va=6%</th>
<th>Va=8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>13</td>
<td>77</td>
<td>69</td>
<td>62</td>
</tr>
<tr>
<td>½”</td>
<td>10</td>
<td>71</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>¾”</td>
<td>9</td>
<td>69</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>1”</td>
<td>8</td>
<td>67</td>
<td>58</td>
<td>51</td>
</tr>
<tr>
<td>1 ½”</td>
<td>7</td>
<td>64</td>
<td>55</td>
<td>47</td>
</tr>
<tr>
<td>2”</td>
<td>6.5</td>
<td>62</td>
<td>52</td>
<td>45</td>
</tr>
</tbody>
</table>
INTRODUCTION OF THE AC MIX DESIGN WINDOW
TYPICAL AC SPECIFICATIONS (MAY OR MAY NOT BE PRESENT)

Mix Properties

- Stability (Min)
- Flow (Min – Max)
- Stiffness (Min)**
- Retained Stability (Min)**

Mix Volumetrics

- Va% (Min – Max)
- Vma% (Min)
- Vfb% (Min – Max)
TYPICAL AC SPECIFICATIONS (MAY OR MAY NOT BE PRESENT)

Gravimetric Properties

- AC% (Min – Max)**
- Dust/Binder Ratio (Min – Max)**
- Knowledge of Gb and Gsb Allows Conversion of Gravimetric to Volumetric Properties

Mandatory to Include TAI MS-2 Criterion

Dnom Controls Vbeff (Min)
Concept of “Mix Design Window”

Develop a graphical Picture, called a “MIX DESIGN WINDOW”

Window is Formed by Superimposing all Specification Volumetric Criterion
On Plot of:

\[V_{beff} \text{ (x-axis)} \text{ and } V_{a\%} \text{ (y-axis)} \]
The AC Mix Design Window

![Graph showing the AC Mix Design Window with labeled axes and parameters: Va, VFB, VMA, AC%, V_{beff min}.]
IMPACT OF EXCESSIVE HMA MIX (BINDER) AGEING
ASTM A_i-VTS$_i$ Viscosity Model

$log \ log \ \eta = A + VTS \ log \ \ TR$

Temperature - Viscosity Relationship

$y = -2.5807x + 8.163$
$R^2 = 0.9993$

$Ai = 8.1630$
$VTSi = -2.5807$
$R^2 = 0.9993$
Developing the Ai-VTSi Parameters

<table>
<thead>
<tr>
<th>Test</th>
<th>Temp (C)</th>
<th>Temp (F)</th>
<th>Temp (R)</th>
<th>Log Temp (R)</th>
<th>Penetration (.1mm)</th>
<th>Viscosity (Poise)</th>
<th>Viscosity (cP)</th>
<th>LogLog Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration</td>
<td>4.0</td>
<td>39.2</td>
<td>498.9</td>
<td>2.698</td>
<td>2.50</td>
<td>4.00E+09</td>
<td>4.00E+11</td>
<td>1.065</td>
</tr>
<tr>
<td>Penetration</td>
<td>10.0</td>
<td>50.0</td>
<td>509.7</td>
<td>2.707</td>
<td>6.00</td>
<td>5.56E+08</td>
<td>5.56E+10</td>
<td>1.031</td>
</tr>
<tr>
<td>Penetration</td>
<td>15.0</td>
<td>59.0</td>
<td>518.7</td>
<td>2.715</td>
<td>9.90</td>
<td>1.80E+08</td>
<td>1.80E+10</td>
<td>1.011</td>
</tr>
<tr>
<td>Penetration</td>
<td>25.0</td>
<td>77.0</td>
<td>536.7</td>
<td>2.730</td>
<td>30.80</td>
<td>1.40E+07</td>
<td>1.40E+09</td>
<td>0.961</td>
</tr>
<tr>
<td>Penetration</td>
<td>32.0</td>
<td>89.6</td>
<td>549.3</td>
<td>2.740</td>
<td>74.80</td>
<td>1.90E+06</td>
<td>1.90E+08</td>
<td>0.918</td>
</tr>
<tr>
<td>Softening Point, F</td>
<td>52.7</td>
<td>126.9</td>
<td>586.6</td>
<td>2.768</td>
<td>13,000</td>
<td>1.30E+06</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>Absolute Visc, P</td>
<td>60.0</td>
<td>140.0</td>
<td>599.7</td>
<td>2.778</td>
<td>9566</td>
<td>9.57E+05</td>
<td>0.777</td>
<td></td>
</tr>
<tr>
<td>Kinematic Visc, cst</td>
<td>135.0</td>
<td>275.0</td>
<td>734.7</td>
<td>2.866</td>
<td>782.00</td>
<td>8.04E+02</td>
<td>0.463</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>121.1</td>
<td>250.0</td>
<td>709.7</td>
<td>2.851</td>
<td>1690.00</td>
<td>1.74E+03</td>
<td>0.511</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>125.0</td>
<td>257.0</td>
<td>716.7</td>
<td>2.855</td>
<td>1338.00</td>
<td>1.38E+03</td>
<td>0.497</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>135.0</td>
<td>275.0</td>
<td>734.7</td>
<td>2.866</td>
<td>748.50</td>
<td>7.69E+02</td>
<td>0.460</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>145.0</td>
<td>293.0</td>
<td>752.7</td>
<td>2.877</td>
<td>441.40</td>
<td>4.54E+02</td>
<td>0.424</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>148.9</td>
<td>300.0</td>
<td>759.7</td>
<td>2.881</td>
<td>369.00</td>
<td>3.79E+02</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>Dynamic Visc, cSt</td>
<td>176.7</td>
<td>350.1</td>
<td>809.8</td>
<td>2.908</td>
<td>114.70</td>
<td>1.18E+02</td>
<td>0.316</td>
<td></td>
</tr>
</tbody>
</table>
Temperature - Viscosity Relationship
RTFO AC Binder (PG 64-22 UCR)

LogLog $\eta = 10.750 - 3.5899 \text{ (Log } T\text{)}$

$R^2 = 0.9990$
AASHTO MEPDG Global Aging System (Witczak-Mirza Model)

• Includes 3 Major Models
 – Original to Mix / Laydown Model
 – Surface Aging Model
 – Viscosity Depth Model
Phases of AC Viscosity Aging
Viscosity Changes at Various Aging Stages
Long Term Field Aging as a Function of the Depth Within the Pavement
Viscosity Depth Relationships at Various Aging Times
Impact of Aging Upon E* Master Curves

![Graph showing the impact of aging upon E* master curves with various time periods and pavement temperatures. The graph includes labels for different time periods: t = 0 months, t = 6 months, t = 12 months, t = 36 months, and t = 120 months.](image-url)
Distribution of E^* with Depth Within a Pavement Layer

(Pav. Temperature: 21.1°C [70°F]; MAAT = 4.4°C [40°F]; Asphalt AC-5; Mix Age: 24 months)
Possible Ways to Have Excessive AC Mix Aging in the Mix-Laydown Process

Possible and Very Practical Ways of Occurrence:

1. Very High Temperatures during the Plant Mixing operations
2. Too Long a Mixing Time during the Plant Mixing operations
3. Reheating of Mix Several Times after Cooling Down
4. Extended Period of Mix Storage in Silos
5. Deficiencies from Target Mix Volumetrics (low AC%; and High Air Voids)
Major Consideration for the Pavement Community in the Greater Phoenix and Arizona Community

- Seriously Consider / Fund a Joint Research Program to:

 “Eliminate Durability Cracking in HMA Pavement Systems in the Southwest United States”

Multi Agency Involvement

Economic benefits of Project are Potentially Enormous
Some Background Fundamentals of Project Scope / Analysis

• AASHTO MEPDG Already Has Excellent :Typical Properties of Ai – VTsi Parameters of a Wide Range of AC Grades

 Pen Graded AC Binders
 Visc Graded Binders
 PG Graded Binders

• Ai – VTsi Parameters Exist for Following Consistency Conditions

 Virgin (Tank) Conditions
 RTFO (Short Term: Mix Laydown) Conditions

• This Information, along with AASHTO Ageing Models, would allow for Forensic Study capability on Actual Projects all over the SW Region
Basis of Research Analysis for Durability Study

Mix Laydown (time = 0)

Actual In-Situ Measured Long Term Aging Stiffness

$\eta(is)$

$\eta(p)$

AASHTO Model Predicted Long Term Aging Stiffness

Tank

$ t=0$

Time - Years

ZW Consultants LLC
Research Study Basis Using Stiffness (Viscosity) Ratio

• For any Given Temperature, Depth, Ageing Time and Environmental Location, the Ratio of the AC Binder Viscosity (η) or Stiffness (G*), for the Actual In-Situ Measurement to that of the Predicted Value is a Direct Indicator of the Probability of Having Durability Cracking

• If the Ratio ((η_{is})/(η_{p})) is

 • Ratio is << 1; No Durability Cracking Should Be Present
 • Ratio is = 1 ; Aging is under Normal (Typical) Conditions
 • Ratio is >> 1: Durability Cracking Becomes Very likely as Ratio Increases
Summary and Conclusions

• Current State of Knowledge is Excellent to Eliminate / Minimize Major Pavement related Distresses of:
 • Repeated Load HMA Fatigue Cracking
 • Rutting / Permanent deformation in HMA
 • Surface Rutting Caused by Subgrade Repetitive Shear Deformations
 • Thermal Fracture
 • Moisture Related Distress
Summary and Conclusions

• The Elimination of Durability Related Cracking in AC Layers is Currently the Most Salient (Major) Distress in the Southwest Region of the US that we DO NOT Presently Have a Fundamental Design Methodology or Procedure to Design Against

• AC Durability Cracking (in my Opinion) is the Most Critical Distress that Has Enormous Economic Implications in the Future Maintenance / Rehabilitation of:

 Primary State / County Highways
 Urban (Residential) Street networks
 Private / Industrial Parking facilities
Summary and Conclusions

• A Comprehensive, Multi-Agency Project, Based Upon Principles Found in the New AASHTO Design Guide, that is Dedicated to the Elimination of Durability Cracking in AC Pavement Systems is **NECESSARY** and would Result in an Enormous Benefit / Cost Ratio for a Major Region of the US.

• The Study should Focus on:
 • Defining Limiting Long Term HMA / AC Binder Ageing Stiffness to Values that will not be Conducive to Developing Durability Cracking in the High Temperature Southwest US.
 • Identify Specification Limits (Badly Needed) on AC Binder Stiffness (Consistency) Values Immediately After the Construction Mix/Laydown Process
The Trip Down The Long Road

Friends Don't Let Friends Drive Drunk