Asphalt Rubber

Understanding Modified Asphalt Binder Technology Workshop

Julie Kliewer, PhD, PE
Objectives

- Understand what differentiates the different types of asphalt rubber materials
- Know ADOT specification philosophy as applied to asphalt rubber
- Know what affects the final properties of asphalt rubber
- Know asphalt rubber specification tests and their purpose
What is Crumb Rubber Modified Asphalt

- No easy answer
 - diverse recycled rubber sources
 - diverse processes and technologies
 - diverse opinions and perceptions
 - a moving target
- Sort of like “what is polymer modified asphalt”
Overview of CRM Technology

- **Material**
 - Crumb Rubber

- **Process**
 - Wet
 - Dry

- **Technology**
 - On-site blend
 - Terminal blend
 - Other
 - Plus Ride
 - Generic
 - Others

- **Product**
 - Modified Binder
 - Rubber
 - Aggregate
Let’s focus on binders modified with rubber…
Asphalt Rubber Binder

- ASTM D6114 – blend of paving grade asphalt cements, ground recycled tire (vulcanized) rubber and other additives for use as a binder in pavement construction; rubber is blended/interacted in hot asphalt cement sufficiently to cause swelling of the rubber particles prior to use...this is “asphalt rubber”
 - traditional wet process AR such as used by ADOT, COP, MAG, BIA, etc.
 - historically blended on-site, occasionally in a terminal
- Terminal blended rubberized asphalt
 - aka “TR” products
Rubber as an asphalt binder modifier

Particulate systems (non-homogeneous)
- ADOT Section 1009 (COP, MAG, etc.) for HMA or chip seals
 - ~20% rubber in paving asphalt
- Polymer Modified Asphalt Rubber (PMAR) for chip seals
 - 15% ADOT Ty B rubber + 2-3% SBS in PG 64-16
- Rubber Asphalt Binder (RAB) for chip seals or HMA
 - 10% #30 rubber + 2-3% SBS in PG 64-16

Non-Particulate systems (homogeneous)
- ADOT PG 76-22TR+ for HMA
 - 8-10% rubber + 1-3% SBS
- AC-15-5TR (ADOT PG 64-28 TR+) for chip seals
 - 5% rubber + 1-3% SBS
Additives

- Used in conjunction with crumb rubber to facilitate manufacture or performance
 - Polymers – high temperature performance
 - Anti-stripping agents/coating enhancers – mitigate moisture damage, ravelling
 - Extender Oils – facilitates rubber/asphalt reaction; aromatic oils help compatibilize rubber and asphalt
 - High Natural Rubber – fatigue performance, high temperature performance
ADOT Asphalt Rubber (Section 1009)

- Use PG asphalt cement
 - CRA Ty 1: PG 64-16 desert
 - CRA Ty 2: PG 58-22 mid-zone
 - CRA Ty 3: PG 52-28 alpine

- Crumb rubber
 - Ty A: chip seal (deleted from ADOT specs)
 - Ty B: hot mix
<table>
<thead>
<tr>
<th>Property</th>
<th>CRA 1</th>
<th>CRA 2</th>
<th>CRA 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade of AC</td>
<td>PG 64-16</td>
<td>PG 58-22</td>
<td>PG 52-28</td>
</tr>
<tr>
<td>Rotational Vis, 350 F, Pa-S</td>
<td>1.5 – 4.0</td>
<td>1.5 – 4.0</td>
<td>1.5 – 4.0</td>
</tr>
<tr>
<td>Pen @ 39.2 F, dmm, min</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Softening Point, C</td>
<td>57</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>Resilience @ 77 F, % min</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>
ADOT Rubber Specs

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No. 10</td>
<td>95 - 100</td>
<td>100</td>
</tr>
<tr>
<td>No. 16</td>
<td>0 - 10</td>
<td>75 - 95</td>
</tr>
<tr>
<td>No. 30</td>
<td></td>
<td>30 - 60</td>
</tr>
<tr>
<td>No. 50</td>
<td>5 - 30</td>
<td></td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 5</td>
<td></td>
</tr>
</tbody>
</table>
Rubber Grinding Methods

“cryo” grind

“ambient” grind
ADOT Proportions

- Minimum 20% rubber by weight asphalt cement

\[
\text{\% rubber} = \left(\frac{20}{100}\right) \times 100\% = 20\% \\
\text{or} \\
\text{\% rubber} = \left(\frac{20}{20+100}\right) \times 100\% = 16.7\%
\]
Rubber Blending Systems
Rubber Blending Systems
Manufacturing Parameters

- **Mixing**
 - 350° – 400° F binder when rubber added
 - react 325° – 375° F for 1 hour
 - test rotational vis

- **Handling**
 - thorough agitation
 - 325° – 375° during mix production
 - Max hold time 10 hrs above 325° F
 - only 1 cool/reheat cycle allowed
 - max 4 days above 250° F allowed
The Reaction Process
(Theory of AR Manufacture)

- During the reaction period
 - light fractions migrate from asphalt to rubber
 - rubber particles swell (4x original size)
 - viscosity of asphalt increases

- Step 1
- Step 2
Binder Design (aka “Blend Profile”)

- Confirm the reaction process
 - blend time
 - blend temperature
 - compatibility of components
- Determine specification compliance
- Final binder properties depend on
 - Asphalt source and grade
 - Rubber source
 - Amount of rubber
 - Gradation of rubber
 - Interaction time and temperature
Temperature Effects

Effect of Temperature on Reaction Viscosity

Viscosity, cPs

Time, minutes

- 300°F
- 350°F
- 400°F
- Min Spec.
Blend Profile 17% rubber

<table>
<thead>
<tr>
<th>Test Performed</th>
<th>Minutes of Reaction</th>
<th>Specified Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Viscosity, Haake at 177°C, Pa-s</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Resilience at 25°C, % Rebound (ASTM D3407)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ring & Ball Softening Point, °F (ASTM D36)</td>
<td>149.0</td>
<td>141.0</td>
</tr>
<tr>
<td>Needle Penetration at 4°C, 200g, 60 sec., 1/10mm (ASTM D5)</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
Blend Profile 18% rubber

<table>
<thead>
<tr>
<th>Test Performed</th>
<th>Minutes of Reaction</th>
<th>Specified Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Viscosity, Haake at 177°C, Pa-s</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Resilience at 25°C, % Rebound (ASTM D3407)</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Ring & Ball Softening Point, °F (ASTM D36)</td>
<td>150.0</td>
<td>150.5</td>
</tr>
<tr>
<td>Needle Penetration at 4°C, 200g, 60 sec., 1/10mm (ASTM D5)</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>
Blend Profile 19% rubber

<table>
<thead>
<tr>
<th>Test Performed</th>
<th>Minutes of Reaction</th>
<th>Specified Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Viscosity, Haake at 177°C, Pa-s</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>Resilience at 25°C, % Rebound (ASTM D3407)</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Ring & Ball Softening Point, °F (ASTM D36)</td>
<td>158.0</td>
<td>157.0</td>
</tr>
<tr>
<td>Needle Penetration at 4°C, 200g, 60 sec., 1/10mm (ASTM D5)</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>
Viscosity

- **Purpose**
 - evaluate extent binder/rubber reaction
 - high temp handling characteristics
Resilience

- Purpose
 - measures elastic properties of binder
Softening Point

- Purpose
 - evaluate high pavement temp stiffness
“Terminal Blended” Asphalt Rubber

- Polar opposite of traditional asphalt rubber ala ASTM D6114
 - smooth and homogeneous
- Developed in Texas by Wright Asphalt Products
 - TRMAC® product platform
- Terminal blended means not on-site blended
- Non-particulate system
 - almost completely soluble in TCE
 - 5 to 10% rubber (ADOT min. 8%)
 - typically 1-3% SBS (ADOT min. 2%)
- Low viscosity relative to traditional AR
- Looks and behaves like polymer modified asphalt
- Applications
 - just about every type of HMA
 - hot applied chip seals
Terminal Blended Rubberized Asphalt

- Specified in ADOT Section 1005
 - Meet requirements of AASHTO M320 PG 76-22
 - Plus
 - Solubility $\geq 97.5\%$
 - Elastic Recovery (10º C) $\geq 55\%$
 - Softening Point $\geq 60º C$
 - Phase Angle @ 76º C $\leq 75º$
For more information

- http://www.wrightasphalt.com/